Skip to main content

INTERLINE POWER FLOW CONTROLLER IPFC

Recent developments of FACTS research have led to a new device: the Interline Power Flow Controller (IPFC). This element consists of two (or more) series voltage source converter-based devices (SSSCs) installed in two (or more) lines and connected at their DC terminals. Thus, in addition to serially compensating the reactive power, each SSSC can provide real power to the common DC link from its own line. The IPFC gives them the possibility to solve the problem of controlling different transmission lines at a determined substation. In fact, the under-utilized lines make available a surplus power which can be used by other lines for real power control. This capability makes it possible to equalize both real and reactive power flow between the lines, to transfer power demand from overloaded to underloaded lines, to compensate against resistive line voltage drops and the corresponding reactive line power, and to increase the effectiveness of a compensating system for dynamic disturbances (transient stability and power oscillation damping). Therefore, the IPFC provides a highly effective scheme for power transmission at a multi-line substation. The IPFC is a multi-line FACTS device.

Figure 1: Schematic diagram of IPFC

An Interline Power Flow Controller (IPFC) consists of a set of converters that are connected in series with different transmission lines. The schematic diagram of IPFC is illustrated in Figure.1. In addition to these series converters, it may also include a shunt converter which is connected between a transmission line and the ground. The converters are connected through a common DC link to exchange active power. Each series converter can provide independent reactive compensation of own transmission line. If a shunt converter is involved in the system, the series converters can also provide independent active compensation; otherwise not all the series converters can provide independent active compensation for their own line. Compared to the Unified Power Flow Controller (UPFC), the IPFC provides a relatively economical solution for multiple transmission line power flow control, since only one shunt converter is involved. The IPFC also gains more control capability than the Static Synchronous Series Compensator (SSSC), which is like the IPFC but without a common DC link, because of the active compensation. From a probabilistic point of view, the performance of the IPFC will be better when more series converter is involved in the IPFC system. However, because the converters are connected through the common DC link, the converters should be physically close to each other. The common DC link will become a location constraint for the IPFC and limit its commercial application in the future network. Therefore, a method that can eradicate the IPFC common DC link and provide the active power exchange between converters will be interesting.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...