Skip to main content

Posts

Showing posts from July, 2015

INSULATING SOLIDS

Solid insulating materials can be classified into two main categories: organic and inorganic. There are a large number of solid inorganic insulants available, including the following: • ALUMINA: produced by heating aluminum hydroxide or oxyhydroxide; it is widely used as a filler for ceramic insulators. Further heating yields the corundum structure, which in its sapphire form is used for dielectric substrates in microcircuit applications. • PORCELAIN: a multiphase ceramic material that is obtained by heating aluminum silicates until a mullite phase is formed. Because mullite is porous, its surface must be glazed with a high-melting-point glass to render it smooth and impervious to contaminants for use in overhead line insulators. • ELECTRICAL-GRADE GLASSES: which tend to be relatively lossy at high temperatures. At low temperatures, however, they are suitable for use in overhead line insulators and in transformer, capacitor, and circuit breaker bushings. At high temperatures,...

SKIN EFFECT

The effective resistance offered by a conductor to high frequencies is considerably greater than the ohmic resistance measured with direct currents (dc). This is because of an action known as the skin effect, which causes the currents to be concentrated in certain parts of the conductor and leaves the remainder of the cross section to contribute little toward carrying the applied current. When a conductor carries an alternating current, a magnetic field is produced that surrounds the wire. This field continually is expanding and contracting as the ac current wave increases from zero to its maximum positive value and back to zero, then through its negative half-cycle. The changing magnetic lines of force cutting the conductor induce a voltage in the conductor in a direction that tends to retard the normal flow of current in the wire. This effect is more pronounced at the center of the conductor. Thus, current within the conductor tends to flow more easily toward the surface o...