By applying pressure to certain crystals (such as quartz or Rochelle salts) or certain ceramics (like barium titanate), electrons can be driven out of orbit in the direction of the force. Electrons leave one side of the material and accumulate on the other side, building up positive and negative charges on opposite sides, as shown in Figure 14. When the pressure is released, the electrons return to their orbits. Some materials will react to bending pressure, while others will respond to twisting pressure. This generation of voltage is known as the piezoelectric effect. If external wires are connected while pressure and voltage are present, electrons will flow and current will be produced. If the pressure is held constant, the current will flow until the potential difference is equalized.
When the force is removed, the material is decompressed and immediately causes an electric force in the opposite direction. The power capacity of these materials is extremely small.
However, these materials are very useful because of their extreme sensitivity to changes of mechanical force.
Example: One example is the crystal phonograph cartridge that contains a Rochelle salt crystal. A phonograph needle is attached to the crystal. As the needle moves in the grooves of a record, it swings from side to side, applying compression and decompression to the crystal. This mechanical motion applied to the crystal generates a voltage signal that is used to reproduce sound.
When the force is removed, the material is decompressed and immediately causes an electric force in the opposite direction. The power capacity of these materials is extremely small.
However, these materials are very useful because of their extreme sensitivity to changes of mechanical force.
Example: One example is the crystal phonograph cartridge that contains a Rochelle salt crystal. A phonograph needle is attached to the crystal. As the needle moves in the grooves of a record, it swings from side to side, applying compression and decompression to the crystal. This mechanical motion applied to the crystal generates a voltage signal that is used to reproduce sound.
Comments