Main Exciter The exciter (sometimes called the main exciter) is a synchronous generator that has its stator and rotor windings inverted. Its field winding is fixed in the stator, and the rotor carries the armature or AC . In addition the rotor carries the semiconductor bridge rectifier that converts the
Author: Engr. Aneel Kumar
Following phasor is phsor diagram of a two-axis salient pole generator. The following points apply to the drawing of phasor diagrams of generators and motors:- • The terminal voltage V is the reference phasor and is drawn horizontally. • The emf E lies along the pole axis of the rotor.
The stator, also called the armature, carries the three-phase AC winding. The rotor, also called the field, carries the DC excitation or field winding. The field winding therefore rotates at the shaft speed and sets up the main magnetic flux in the machine. The fundamental magnetic action between the stator
Again assume that the generator is loaded and operating in a steady state. In this situation the magnitude of the stator current is allowed to change rapidly, as in the case of a short circuit in the stator circuit. The additional flux produced by the stator winding will try to
Assume the generator is loaded and operating in a steady state. If the peak-to-peak or rms value of the stator current changes in magnitude then its corresponding change in magneto-motive force (mmf) will try to change the air-gap flux by armature reaction. Relatively slow changes will allow the change in
The rotating field in the air gap of a synchronous machine is generally considered to be free of space harmonics, when the basic operation of the machine is being considered. In an actual machine there are space harmonics present in the air gap, more in salient pole machines than a
The stator, also called the armature, carries the three-phase AC winding. The rotor, also called the field, carries the DC excitation or field winding. The field winding therefore rotates at the shaft speed and sets up the main magnetic flux in the machine. The fundamental magnetic action between the stator
The theoretical operation of synchronous generators and synchronous motors is almost the same. The main differences are the direction of stator current and the flow of power through these machines. The construction of generators and motors, of the same kW ratings, used in the oil and gas industry is very
In all power systems the requirement is that the steady state speed deviation, and hence frequency, is kept small for incremental changes in power demand, even if these power increments are quite large – 20%, for example. There are two main methods used for speed governing gas turbines, a) Droop
Gas turbines are usually started by a DC motor or an air motor. Either system is available for most turbines up to about 20 MW. Occasionally AC motors are used. Beyond 20 MW, when heavy industrial machines tend to be used, it becomes more practical to use air motors or