Conventional electromagnetic devices as well as semiconductor applications act as sources of harmonics. Conventional electromagnetic devices include stationary transformer as well as rotating machines. Harmonic generation in these machine depends on the properties of the materials used to construct them, different design constraints and considerations, operating principle and of course
Year: 2014
IMPULSE TRANSIENT, OSCILLATORY TRANSIENT, VOLTAGE DIPS, VOLTAGE SWELLS OR SURGES, OVER VOLTAGE, UNDER VOLTAGE, WAVEFORM DISTORTION OR HARMONICS, NOTCHING, NOISE IMPULSE TRANSIENT A sudden and short-duration disturbance caused by a very rapid change in the steady-state condition of voltage, current, or both, that is unidirectional in polarity. Frequency range: >5
Energy management is the process of monitoring, coordinating, and controlling the generation, transmission, and distribution of electrical energy. The physical plant to be managed includes generating plants that produce energy fed through transformers to the high-voltage transmission network (grid), interconnecting generating plants, and load centers. Transmission lines terminate at substations
Hydroelectric power generation involves the storage of a hydraulic fluid, normally water, conversion of the hydraulic energy of the fluid into mechanical energy in a hydraulic turbine, and conversion of the mechanical energy to electrical energy in an electric generator. The first hydroelectric power plants came into service in the
SITING Hydroelectric plants are located in geographic areas where they will make economic use of hydraulic energy sources. Hydraulic energy is available wherever there is a flow of liquid and head. Head represents potential energy and is the vertical distance through which the fluid falls in the energy conversion process.
A pumped storage unit is one in which the turbine and generator are operated in the reverse direction to pump water from the lower reservoir to the upper reservoir. The generator becomes a motor, drawing its energy from the power system, and supplies mechanical power to the turbine which acts
The exterior frame, made of steel, either cast or a weldment, supports the laminated stator core and has feet, or flanges, for mounting to the foundation. Frame vibration from core magnetic forcing or rotor unbalance is minimized by resilient mounting the core and/or by designing to avoid frame resonance with
The stator core assembly of a synchronous machine is almost identical to that of an induction motor. A major component of the stator core assembly is the core itself, providing a high permeability path for magnetism. The stator core is comprised of thin silicon steel laminations and insulated by a
THE ROTOR ASSEMBLY The rotor of a synchronous machine is a highly engineered unitized assembly capable of rotating satisfactorily at synchronous speed continuously according to standards or as necessary for the application. The central element is the shaft, having journals to support the rotor assembly in bearings. Located at the
The duty on self-starting synchronous motors and condensors is severe, as there are large induction currents in the starting cage winding once the stator winding is energized (see Figure). These persist as the motor comes up to speed, similar to but not identical to starting an induction motor. Similarities exist