Switching techniques of pulse width modulation (PWM) have been popular in the area of power electronics and drive systems. PWM is commonly used in applications like motor speed control, converters audio amplifiers etc. PWM is used to adjust voltage applied to the motor. There is no single PWM method which can suite for all applications. As per the advanced technology in solid state power electronic devices and microprocessors, various pulse-width modulation (PWM) techniques have been developed for different industrial applications. For the above reasons, the PWM techniques have been the subject of intensive research since 1970s. The main objective of the PWM is to control the inverter output voltage and to reduce the harmonic content in the output voltage. The pulse width modulation (PWM) techniques are mainly used for voltage control. These techniques are most efficient and they control the drives of the switching devices. The different PWM techniques are Single pulse width modulation, Multiple pulse width modulation, Phase displacement control, Sinusoidal pulse width modulation, Harmonic Injection modulation, Space Vector pulse width modulation, Hysteresis (Delta) pulse width modulation, Selective Harmonic Elimination and Current Controlled pulse width modulation. Hysteresis controller is used for Current source inverter and all the remaining PWM techniques are used for Voltage source inverter. Sinusoidal and Space Vector PWM techniques are most widely used. They control the output voltage as well as reduce the harmonics.
Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.
Comments