Skip to main content

TYPES OF ELECTRICAL LOADS

Resistive Load


Resistive loads can be purely resistive or of the tungsten-heater load type. A resistive load that has no heating element is the easiest for a switch to handle, and the switch’s rating is based on this type of load. A resistive load is one in which 100% of the load is composed of resistive devices. The power factor is high (PF = 1) and contact erosion is low. Consequently, the switch’s electrical life can be anticipated with some certainty. 

Lamp Load


When a switch closes on a resistive lamp load, the switch sees a short circuit because the cold resistance of the lamp filament is near zero. The surge current as the switch closes can be many times the steady state current. As the lamp filament heats up to operating temperature, the resistance of the filament increases and the current decreases to the lamp’s steady state. 

Motor


Motor loads present yet another brutal environment for switch contacts. Closing the switch contact on a motor start-up load causes very large current surges of about 3 to 8 times the running current. When the switch is opened and the current decreases, the magnetic field of the inductor collapses and an electromotive force is induced. The polarity of the induced voltage is such as to oppose any change in current flow. This induced voltage aids the source voltage in striking an arc and maintaining it as the contacts separate. 

Inductive Load


Non-motor inductive loads, such as those seen in switching power supplies, have inrush currents that greatly exceed the normal operating currents of the equipment. This inrush current can easily reach 8 to 10 times the steady state current. As a switch on an inductive load is opened, the inductor, or transformer, induces a counter option “voltage” in the circuit. This voltage opposes any change in the circuit current and can reach hundreds of volts. This extremely high voltage can restrike the arc as the switch contacts open resulting in severely eroded or welded contacts. 

Capacitive


With such loads as DC power supplies, welding machines, and strobe charging units the inrush current is even more damaging than with inductive loads. To the switch a capacitive load appears as a dead short as the switch closes. In the first few milliseconds the inrush current can sometimes reach 100 times the steady state current of the circuit. Even worse for the switch, this inrush occurs before the contact bounce has subsided. This produces severe arcing and massive contact erosion. Often the contacts weld upon closure preventing the switch from ever opening. In an emergency the operator of the equipment would know he could not open the circuit.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

DIFFERENCE BETWEEN GRID STATION AND SUB STATION

An electrical power substation is a conversion point between transmission level voltages (such as 138 KV) and distribution level voltages (such as 11 KV). A substation has one or more step-down transformers and serves a regional area such as part of a city or neighborhood. Substations are connected to each other by the transmission ring circuit. An electrical grid station is an interconnection point between two transmission ring circuits, often between two geographic regions. They might have a transformer, depending on the possibly different voltages, so that the voltage levels can be adjusted as needed. The interconnected network of grid stations is called the grid, and may ultimately represent an entire multi-state region. In this configuration, loss of a small section, such as loss of a power station, does not impact the grid as a whole, nor does it impact the more localized neighborhoods, as the grid simply shifts its power flow to compensate, giving the power station o...

Types of Transmission Towers in Saudi Electricity Company (SEC) – NGSA Standards

 The Kingdom of Saudi Arabia (KSA) is rapidly expanding its energy infrastructure projects to meet the growing demand for electricity. At the heart of this growth lies the high voltage transmission network , which delivers reliable power from generation plants to cities, industries, and remote areas. To ensure safety and efficiency, the Saudi Electricity Company (SEC) follows strict NGSA (National Grid Saudi Arabia) standards for designing and selecting transmission towers . These lattice steel towers are engineered to withstand extreme desert conditions, high wind loads, and long transmission spans. In this article, we will explore the different types of transmission towers in Saudi Arabia , their applications, and how they contribute to the power transmission system design . Why Transmission Towers Are Crucial in Power Grid Development Every kilometer of transmission line construction requires careful planning. The right tower design ensures: Stable support for 69k...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...