Skip to main content

TIRRIL REGULATOR

In this type of regulator, a fixed resistance is cut in and cut out of the exciter field circuit of the alternator. This is achieved by rapidly opening and closing a shunt circuit across the exciter rheostat. For this reason, it is also known as vibrating type voltage regulator.

CONSTRUCTION OF TIRRIL REGULATOR

Figure shows the essential parts of a Tirril voltage regulator. A rheostat R is provided in the exciter circuit and its value is set to give the required excitation. This rheostat is put in and out of the exciter circuit by the regulator, thus varying the exciter voltage to maintain the desired voltage of the alternator.

(I) MAIN CONTACT: There are two levers at the top which carry the main contacts at the facing ends. The left-hand lever is controlled by the exciter magnet whereas the right hand lever is controlled by an AC magnet known as main control magnet.

(II) EXCITER MAGNET: This magnet is of the ordinary solenoid type and is connected across the exciter mains. Its exciting current is, therefore, proportional to the exciter voltage. The counterbalancing force for the exciter magnet is provided by four coil springs.

(III) AC MAGNET: It is also of solenoid type and is energized from AC busbars. It carries series as well as shunt excitation. This magnet is so adjusted that with normal load and voltage at the alternator, the pulls of the two coils are equal and opposite, thus keeping the right-hand lever in the horizontal position.

(IV) DIFFERENTIAL RELAY: It essentially consists of a U-shaped relay magnet which operates the relay contacts. The relay magnet has two identical windings wound differentially on both the limbs. These windings are connected across the exciter mains–the left hand one permanently while the right hand one has its circuit completed only when the main contacts are closed. The relay contacts are arranged to shunt the exciter-field rheostat R. A capacitor is provided across the relay contacts to reduce the sparking at the time the relay contacts are opened.

OPERATION OF TIRRIL REGULATOR:

The two control magnets (i.e. exciter magnet and AC magnet) are so adjusted that with normal load and voltage at the alternator, their pulls are equal, thus keeping the main contacts open. In this position of main contacts, the relay magnet remains energized and pulls down the armature carrying one relay contact. Consequently, relay contacts remain open and the exciter field rheostat is in the field circuit.

When the load on the alternator increases, its terminal voltage tends to fall. This causes the series excitation to predominate and the AC magnet pulls down the right-hand lever to close the main contacts. Consequently, the relay magnet is de-energized and releases the armature carrying the relay contact. The relay contacts are closed and the rheostat R in the field circuit is short circuited.

This increases the exciter-voltage and hence the excitation of the alternator. The increased excitation causes the alternator voltage to rise quickly. At the same time, the excitation of the exciter magnet is increased due to the increase in exciter voltage. Therefore, the left-hand lever is pulled down, opening the main contacts, energizing the relay magnet and putting the rheostat R again in the field circuit before the alternator voltage has time to increase too far. The reverse would happen should the load on the alternator decrease.

It is worthwhile to mention here that exciter voltage is controlled by the rapid opening and closing of the relay contacts. As the regulator is worked on the overshooting the mark principle, therefore, the terminal voltage does not remain absolutely constant but oscillates between the maximum and minimum values. In fact, the regulator is so quick acting that voltage variations never exceed ± 1%.

Figure: TIRRIL REGULATOR

Comments

Unknown said…
good...... thanks for this.

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

INTERLINE POWER FLOW CONTROLLER IPFC

Recent developments of FACTS research have led to a new device: the Interline Power Flow Controller (IPFC) . This element consists of two (or more) series voltage source converter-based devices (SSSCs) installed in two (or more) lines and connected at their DC terminals. Thus, in addition to serially compensating the reactive power , each SSSC can provide real power to the common DC link from its own line. The IPFC gives them the possibility to solve the problem of controlling different transmission lines at a determined substation . In fact, the under-utilized lines make available a surplus power which can be used by other lines for real power control. This capability makes it possible to equalize both real and reactive power flow between the lines, to transfer power demand from overloaded to underloaded lines, to compensate against resistive line voltage drops and the corresponding reactive line power, and to increase the effectiveness of a compensating system for dynamic disturbanc...

REACTIVE POWER AND ITS SOURCES

REACTIVE POWER: Reactive power is a concept used by engineers to describe the background energy movement in an Alternating Current (AC) system arising from the production of electric and magnetic fields. These fields store energy which changes through each AC cycle. Devices which store energy by virtue of a magnetic field produced by a flow of current are said to absorb reactive power; those which store energy by virtue of electric fields are said to generate reactive power. Power flows, both actual and potential, must be carefully controlled for a power system to operate within acceptable voltage limits. Reactive power flows can give rise to substantial voltage changes across the system, which means that it is necessary to maintain reactive power balances between sources of generation and points of demand on a 'zonal basis'. Unlike system frequency, which is consistent throughout an interconnected system, voltages experienced at points across the system form a "voltage ...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...