Skip to main content

WEBER AND EWING MOLECULAR THEORY

This theory was first advanced by Weber in 1852 and was, later on, further developed by Ewing in 1890. The basic assumption of this theory is that molecules of all substances are inherently magnets in themselves, each having N and S pole. In an un-magnetized state, it is supposed that these small molecular magnets lie in all sorts of haphazard manner forming more or less closed loops. According to the laws of attraction and repulsion, these closed magnetic circuits are satisfied internally, hence there is no resultant external magnetism exhibited by the iron bar. But when such an iron bar is placed in a magnetic field or under the influence of a magnetizing force, then these molecular magnets start turning round their axes and orientate themselves more or less along straight lines parallel to the direction of the magnetizing force. This linear arrangement of the molecular magnets results in N polarity at one end of the bar and S polarity at the other (seen in figure). As the small magnets turn more nearly in the direction of the magnetizing force, it requires more and more of this force to produce a given turning moment, thus accounting for the magnetic saturation. On this theory, the hysteresis loss is supposed to be due to molecular friction of these turning magnets.



Because of the limited knowledge of molecular structure available at the time of Weber, it was not possible to explain firstly, as to why the molecules themselves are magnets and secondly, why it is impossible to magnetize certain substances like wood etc. The first objection was explained by Ampere who maintained that orbital movement of the electrons round the atom of a molecule constituted a flow of current which, due to its associated magnetic effect, made the molecule a magnet. Later on, it became difficult to explain the phenomenon of diamagnetism (shown by materials like water, quartz, silver and copper etc.) erratic behavior of ferromagnetic (intensely magnetisable) substances like iron, steel, cobalt, nickel and some of their alloys etc. and the paramagnetic (weakly magnetisable) substances like oxygen and aluminum etc. Moreover, it was asked: if molecules of all substances are magnets, then why does not wood or air etc. become magnetized?


All this has been explained satisfactorily by the atom-domain theory which has superseded the molecular theory. It is beyond the scope of this book to go into the details of this theory. The interested reader is advised to refer to some standard book on magnetism. However, it may just be mentioned that this theory takes into account not only the planetary motion of an electron but its rotation about its own axis as well. This latter rotation is called ‘electron spin’. The gyroscopic behavior of an electron gives rise to a magnetic moment which may be either positive or negative. A substance is ferromagnetic or diamagnetic accordingly as there is an excess of unbalanced positive spins or negative spins. Substances like wood or air are non-magnetisable because in their case, the positive and negative electron spins are equal, hence they cancel each other out.

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...