Skip to main content

PRIMARY AND SECONDARY BATTERIES

An electric battery consists of a number of electrochemical cells, connected either in series or parallel. A cell, which is the basic unit of a battery, may be defined as a power generating device, which is capable of converting stored chemical energy into electrical energy. If the stored energy is inherently present in the chemical substances, it is called a primary cell or a non-rechargeable cell. Accordingly, the battery made of these cells is called primary battery. The examples of primary cells are Leclanche cell, zinc-chlorine cell, alkaline-manganese cell and metal air cells etc.


If, on the other hand, energy is induced in the chemical substances by applying an external source, it is called a secondary cell or rechargeable cell. A battery made out of these cells is called a secondary battery or storage battery or rechargeable battery. Examples of secondary cells are lead-acid cell, nickel-cadmium cell, nickel-iron cell, nickel-zinc cell, nickel-hydrogen cell, silver-zinc cell and high temperature cells like lithium-chlorine cell, lithium-sulphur cell, sodium-sulphur cell etc.

CLASSIFICATION OF SECONDARY BATTERIES

Various types of secondary batteries can be grouped in to the following categories as per their use:

1. AUTOMOTIVE BATTERIES OR SLI BATTERIES OR PORTABLE BATTERIES:

These are used for starting, lighting and ignition (SLI) in internal-combustion-engine vehicles.

Examples are; lead-acid batteries, nickel-cadmium batteries etc.

2. VEHICLE TRACTION BATTERIES OR MOTIVE POWER BATTERIES OR INDUSTRIAL BATTERIES:

These are used as a motive power source for a wide variety of vehicles. Lead-acid batteries, nickel-iron batteries, silver-zinc batteries have been used for this purpose. A number of advance batteries including high-temperature batteries are under development for electric vehicle (EV) use.

These high-temperature batteries like sodium-sulphur and lithium-iron sulphide have energy densities in the range of 100-120 Wh/kg.

3. STATIONARY BATTERIES:

These fall into two groups

(a) Standby power system which is used intermittently and
(b) Load leveling system which stores energy when demand is low and, later on, uses it to meet peak demand.

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...