Skip to main content

PRIMARY COMPONENTS OF AN OVERHEAD TRANSMISSION LINE

The primary components of an overhead transmission line are:
  1. Conductors
  2. Ground or shield wires
  3. Insulators
  4. Support structures
  5. Land or right-of-way (R-O-W)
1) CONDUCTORS: are the wires through which the electricity passes. Transmission wires are usually of the aluminum conductor steel reinforced (ACSR) type, made of stranded aluminum woven around a core of stranded steel that provides structural strength. When there are two or more of these wires per phase, they are called bundled conductors.

2) GROUND OR SHIELD WIRES: are wires strung from the top of one transmission tower to the next, over the transmission line. Their function is to shield the transmission line from lightning strikes.



3) INSULATORS: are made of materials which do not permit the flow of electricity. They are used to attach the energized conductors to the supporting structures, which are grounded. The higher the voltage at which the line operates, the longer the insulator strings. In recent years, polymer insulators have become popular in place of the older, porcelain variety. They have the advantage of not shattering if struck by a projectile.

4) SUPPORT STRUCTURE: The most common form of support structure for transmission lines is a steel lattice tower, although wood H frames (so named because of their shape) and steel poles are also used. In recent years, as concern about the visual impact of these structures has increased, tubular steel towers also have come into use. The primary purpose of the support structure is to maintain the electricity-carrying conductors at a safe distance from the ground and from each other. Higher voltage transmission lines require greater distances between phases and from the conductors to ground than lower voltage lines and, therefore, they require bigger towers. The clearance from ground of the transmission line is usually determined at the midpoint between two successive towers, at the low point of the centenary formed by the line.

5) LAND OR RIGHT-OF-WAY: The land that the tower line transverses is called the right-of way (R-O-W). To maintain adequate clearances, as the transmission voltage increases, R-O-W widths also increase. In areas where it is difficult to obtain R-O-Ws, utilities design their towers to carry multiple circuits. In many areas of the country, it is not uncommon to see a structure supporting two transmission lines and one or more sub transmission or distribution lines. There are different philosophies on the selection of R-O-Ws.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...