Skip to main content

REACTIVE POWER AND ITS SOURCES

REACTIVE POWER:

Reactive power is a concept used by engineers to describe the background energy movement in an Alternating Current (AC) system arising from the production of electric and magnetic fields. These fields store energy which changes through each AC cycle. Devices which store energy by virtue of a magnetic field produced by a flow of current are said to absorb reactive power; those which store energy by virtue of electric fields are said to generate reactive power.

Power flows, both actual and potential, must be carefully controlled for a power system to operate within acceptable voltage limits. Reactive power flows can give rise to substantial voltage changes across the system, which means that it is necessary to maintain reactive power balances between sources of generation and points of demand on a 'zonal basis'. Unlike system frequency, which is consistent throughout an interconnected system, voltages experienced at points across the system form a "voltage profile" which is uniquely related to local generation and demand at that instant, and is also affected by the prevailing system network arrangements. National Grid is obliged to secure the transmission network to closely defined voltage and stability criteria. This is predominantly achieved through circuit arrangements, transformers and shunt or static compensation.

SOURCES OF REACTIVE POWER:

Most equipment connected to the electricity system will generate or absorb reactive power, but not all can be used economically to control voltage. Principally synchronous generators and specialised compensation equipment are used to set the voltage at particular points in the system, which elsewhere is determined by the reactive power flows.

1) SYNCHRONOUS GENERATORS:

Synchronous machines can be made to generate or absorb reactive power depending upon the excitation (a form of generator control) applied. The output of synchronous machines is continuously variable over the operating range and automatic voltage regulators can be used to control the output so as to maintain a constant system voltage.

2) SYNCHRONOUS COMPENSATORS:

Certain smaller generators, once run up to speed and synchronised to the system, can be declutched from their turbine and provide reactive power without producing real power. This mode of operation is called Synchronous Compensation.

3) CAPACITIVE AND INDUCTIVE COMPENSATORS:

These are devices that can be connected to the system to adjust voltage levels. A capacitive compensator produces an electric field thereby generating reactive power whilst an inductive compensator produces a magnetic field to absorb reactive power. Compensation devices are available as either capacitive or inductive alone or as a hybrid to provide both generation and absorption of reactive power.

4) OVERHEAD LINES AND UNDERGROUND CABLES:

Overhead lines and underground cables, when operating at the normal system voltage, both produce strong electric fields and so generate reactive power. When current flows through a line or cable it produces a magnetic field which absorbs reactive power. A lightly loaded overhead line is a net generator of reactive power whilst a heavily loaded line is a net absorber of reactive power. In the case of cables designed for use at 275 or 400kV the reactive power generated by the electric field is always greater than the reactive power absorbed by the magnetic field and so cables are always net generators of reactive power.

5) TRANSFORMERS:

Transformers produce magnetic fields and therefore absorb reactive power. The heavier the current loading the higher the absorption.

6) CONSUMER LOADS:

Some loads such as motors produce a magnetic field and therefore absorb reactive power but other customer loads, such as fluorescent lighting, generate reactive power. In addition reactive power may be generated or absorbed by the lines and cables of distribution systems.

Comments

Anonymous said…
thanks for the information

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

INTERLINE POWER FLOW CONTROLLER IPFC

Recent developments of FACTS research have led to a new device: the Interline Power Flow Controller (IPFC) . This element consists of two (or more) series voltage source converter-based devices (SSSCs) installed in two (or more) lines and connected at their DC terminals. Thus, in addition to serially compensating the reactive power , each SSSC can provide real power to the common DC link from its own line. The IPFC gives them the possibility to solve the problem of controlling different transmission lines at a determined substation . In fact, the under-utilized lines make available a surplus power which can be used by other lines for real power control. This capability makes it possible to equalize both real and reactive power flow between the lines, to transfer power demand from overloaded to underloaded lines, to compensate against resistive line voltage drops and the corresponding reactive line power, and to increase the effectiveness of a compensating system for dynamic disturbanc...

AC Transmission Line and Reactive Power Compensation: A Detailed Overview

  Introduction The efficient operation of modern power systems depends significantly on the management of AC transmission lines and reactive power. Reactive power compensation is a vital technique for maintaining voltage stability, improving power transfer capability, and reducing system losses. This article explores the principles of AC transmission lines, the need for reactive power compensation, and its benefits in power systems. Keywords: Reactive Power Compensation Benefits, STATCOM vs SVC Efficiency, Power Transmission Stability Solutions, Voltage Stability in Long-Distance Grids, Dynamic Reactive Power Compensation.      Fundamentals of AC Transmission Lines AC transmission lines are the backbone of modern power systems, connecting generation stations to distribution networks. They have distributed electrical parameters such as resistance ( R R R ), inductance ( L L ), capacitance ( C C ), and conductance ( G G ) along their length. These parameters influence ...

OPERATING PRINCIPLE OF THE DSTATCOM

Basically, the DSTATCOM system is comprised of three main parts: a Voltage Source Converter (VSC), a set of coupling reactors and a controller. The basic principle of a DSTATCOM installed in a power system is the generation of a controllable ac voltage source by a voltage source inverter (VSI) connected to a dc capacitor (energy storage device). The ac voltage source, in general, appears behind a transformer leakage reactance. The active and reactive power transfer between the power system and the DSTATCOM is caused by the voltage difference across this reactance. The DSTATCOM is connected to the power networks where the voltage-quality problem is a concern. All required voltages and currents are measured and are fed into the controller to be compared with the commands. The controller then performs feedback control and outputs a set of switching signals to drive the main semiconductor switches (IGBT’s, which are used at the distribution level) of the power converter accordingly. Fi...