Skip to main content

BEHAVIOUR OF SHUNT REACTOR DURING EXTERNAL AND INTERNAL FAULTS

Shunt reactors are connected in parallel with the rest of the power network. Shunt reactor can be treated as a device with the fixed impedance value. Therefore the individual phase current is directly proportional to the applied phase voltage (i.e. I=U/Z).

Thus during external fault condition, when the faulty phase voltage is lower than the rated voltage , the current in the faulty phase will actually reduce its value from the rated value.

Depending on the point on the voltage wave when external fault happens the reduce current might have superimposed dc component. Such behavior is verified by an ATP simulation and it is shown in Figure 17.

Figure 17: External Phase A to Ground Fault, Reactor Phase Currents
As a result, shunt reactor unbalance current will appear in the neutral point as shown in Figure 18. However, this neutral point current will typically be less than 1 pu irrespective of the location and fault resistance of the external fault.

Figure 18: External Phase A to Ground Fault, Reactor Zero-sequence Currents
Similarly during an internal fault the value of the individual phase currents and neutral point current will depend very much on the position of the internal fault. Assuming that due to the construction details, internal shunt reactor phase-to-phase faults are not very likely, only two extreme cases of internal phase to ground fault scenarios will be presented here.

In the first case the Phase A winding to ground fault, 1% from the neutral point has been simulated in ATP. As a result the phase currents on the HV side (i.e. in reactor bushings) will be practically the same as before the fault as shown in Figure 19.

Figure 19: Internal Phase A Winding to Ground Fault, Phase Currents
However phase A current at the shunt reactor star point and common neutral point current will have very big value due to so-called transformer effect. These currents can be so high to even cause CT saturation as shown in Figure 20 for the common neutral point current.

Figure 20: Internal Phase A Winding to Ground Fault, Zero-sequence Currents
This type of the internal fault shall be easily detected and cleared by the differential, restricted ground fault or neutral point ground overcurrent protection, but not by reactor HV side overcurrent or HV residual ground fault protections.

In the second case the Phase A to ground fault, just between the HV CTs and shunt reactor winding (i.e. shunt reactor bushing failure) has been investigated. In this case the currents have opposite properties. The phase A current on the HV side is very big (limited only by the power system source impedance and fault resistance), while the phase A current in reactor star point will have very small value due to a fact that phase A winding is practically short-circuited.

As a result, shunt reactor unbalance current will appear in the neutral point. However, this neutral point current will typically have a value around 1 pu (i.e. similar value as during external ground fault).

That type of the internal fault (i.e. shunt reactor bushing failure) shall be easily detected and cleared by the differential, restricted ground fault or HV side overcurrent or residual ground fault protections. Neutral point ground overcurrent protection can operate with the time delay.

For internal ground fault in some other location in-between these two positions the shunt reactor currents will have values somewhere in the range limited by this two extreme cases.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...