Skip to main content

COMMUTATION

When the armature rotates a half a revolution ‘A’ is positioned at the south pole “S” and ‘B’ positioned at the north pole “N”. As the magnetic field surrounding ‘A’ is in the anti-clockwise direction the magnetic field would be stronger under ‘A’ and above ‘B’, which would mean that the armature would now rotate in the opposite direction. The motor would never rotate.

To maintain rotation of the armature in the one direction the flow or current through the armature must be reversed when ‘A’ is at the “S” pole of the field coil.

A commutator is used with the motor to reverse the current flowing in the armature. Fig. “X” shows the black half of the armature at “N” and is connected via the segment of the commutator through the carbon brush to the battery negative terminal. In this position, the current flow through the armature produces a magnetic field of anti-clockwise direction through the black half ‘A’ of the armature and clock-wise through the white ‘B’. Interaction occurs and the loop rotates.

Fig. ‘Y’, the armature has moved through half a turn so the white section is now at “N”. The brush which connects to the negative side of the battery is now in contact with the white segment of the commutator. The current flowing in the armature is now reversed which means the direction of the lines of force of white is now anticlockwise and clockwise in the black “A”.



The interaction of the magnetic fields will rotate the armature in the same direction as when black “A” was at “N”. As the armature rotates therefore the magnetic field of the armature remains constant to the main field.

To increase the power of the motor many wire coils or loops are used in the armature tc maintain a constant push on the armature. Four poles are used two north and two south to produce a strong main field and are wound to give alternate N and S poles. Because some starters use 200 amps when operating four carbon brushes are fitted to distribute the current load.

Starter motors are usually series-wound motors because they produce their maximum torque at the beginning of their armature rotation.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...