Skip to main content

The Magnetic Field

Magnetic fields are the fundamental mechanism by which energy is converted from one form to another in motors, generators and transformers. 

First, we are going to look at the basic principle – A current-carrying wire produces a magnetic field in the area around it.

Production of a Magnetic Field

1. Ampere’s Law – the basic law governing the production of a magnetic field by a current:

where H is the magnetic field intensity produced by the current Inet and dl is a differential element of length along the path of integration.  H is measured in Ampere-turns per meter.

2. Consider a current-carrying conductor is wrapped around a ferromagnetic core;


3. Applying Ampere’s law, the total amount of magnetic field induced will be proportional to the amount of current flowing through the conductor wound with N turns around the ferromagnetic material as shown. Since the core is made of ferromagnetic material, it is assume that a majority of the magnetic field will be confined to the core.  

4. The path of integration in Ampere’s law is the mean path length of the core, lc.  The current passing within the path of integration Inet is then Ni, since the coil of wires cuts the path of integration N times while carrying the current i.  Hence Ampere’s Law becomes,

5. In this sense, H (Ampere turns per metre) is known as the effort required to induce a magnetic field. The strength of the magnetic field flux produced in the core also depends on the material of the core.  Thus,
B = magnetic flux density (webers per square meter, Tesla (T))
µ= magnetic permeability of material (Henrys per meter)
H = magnetic field intensity (ampere-turns per meter)

6. The constant µ may be further expanded to include relative permeability which can be defined as below:

7. Hence the permeability value is a combination of the relative permeability and the permeability of free space. The value of relative permeability is dependent upon the type of material used. The higher the amount permeability, the higher the amount of flux induced in the core. Relative permeability is a convenient way to compare the magnetizability of materials.

8. Also, because the permeability of iron is so much higher than that of air, the majority of the flux in an iron core remains inside the core instead of travelling through the surrounding air, which has lower permeability.  The small leakage flux that does leave the iron core is important in determining the flux linkages between coils and the self-inductances of coils in transformers and motors. 

9. In a core such as in the figure,
Now, to measure the total flux flowing in the ferromagnetic core, consideration has to be made in terms of its cross sectional area (CSA). Therefore,
Where: A – cross sectional area throughout the core

Assuming that the flux density in the ferromagnetic core is constant throughout hence constant A, the equation simplifies to be:
Taking into account past derivation of B,






Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

DIFFERENCE BETWEEN GRID STATION AND SUB STATION

An electrical power substation is a conversion point between transmission level voltages (such as 138 KV) and distribution level voltages (such as 11 KV). A substation has one or more step-down transformers and serves a regional area such as part of a city or neighborhood. Substations are connected to each other by the transmission ring circuit. An electrical grid station is an interconnection point between two transmission ring circuits, often between two geographic regions. They might have a transformer, depending on the possibly different voltages, so that the voltage levels can be adjusted as needed. The interconnected network of grid stations is called the grid, and may ultimately represent an entire multi-state region. In this configuration, loss of a small section, such as loss of a power station, does not impact the grid as a whole, nor does it impact the more localized neighborhoods, as the grid simply shifts its power flow to compensate, giving the power station o...

Types of Transmission Towers in Saudi Electricity Company (SEC) – NGSA Standards

 The Kingdom of Saudi Arabia (KSA) is rapidly expanding its energy infrastructure projects to meet the growing demand for electricity. At the heart of this growth lies the high voltage transmission network , which delivers reliable power from generation plants to cities, industries, and remote areas. To ensure safety and efficiency, the Saudi Electricity Company (SEC) follows strict NGSA (National Grid Saudi Arabia) standards for designing and selecting transmission towers . These lattice steel towers are engineered to withstand extreme desert conditions, high wind loads, and long transmission spans. In this article, we will explore the different types of transmission towers in Saudi Arabia , their applications, and how they contribute to the power transmission system design . Why Transmission Towers Are Crucial in Power Grid Development Every kilometer of transmission line construction requires careful planning. The right tower design ensures: Stable support for 69k...