Skip to main content

TRANSMISSION LINE TOWER PARAMETERS

For optimization of transmission line towers, it is important to know various design parameters that control the design of the tower. Some of the parameters that dictate the configuration of the transmission line towers are briefly described below:


TOWER HEIGHT:


The height of the tower is determined by parameters such as number of cross arms, vertical spacing between cross arms, height of ground-wire peak, minimum ground clearance, maximum sag and other clearances. The cost of the tower increases with the height of the tower. Hence, it is desirable to keep the tower height minimum to the extent possible without sacrificing the structural safety and functional requirement such as ground clearance and electrical clearance.


SAG:


The conductor wires and ground-wires sag due to self-weight. The size and type of the conductor, wind and climatic conditions of the region and span length determine the conductor’s sag and tension. Span length is fixed from economic considerations. The maximum sag occurs at the maximum temperature and still wind conditions. Sagging of the conductor cables is considered in determining the height of the tower. It is essential to have minimum clearance between the bottom-most conductor and the ground, at the point where the sag is maximum. Sag tension is the force on the conductor, which in turn is transferred to the tower. Sag tension is maximum at the time of maximum temperature and when wind is at maximum. Loads such as self-weight and snow load on the conductors contribute to the sag tension.

Spacing between the towers, ground level difference between tower locations, the mechanical properties of the conductors and ground-wires decide the sag distance and sag tension in the cables. The conductors assume catenary profile and the sag is calculated based on parabolic formulae or procedure given in codes of practices.

MINIMUM GROUND CLEARANCE:


Power conductors along the entire route of the transmission line should maintain requisite clearance to ground over open country, national highways, important roads, electrified and un-electrified railway tracks, navigable and non-navigable rivers, telecommunication and power lines, etc. as laid down in various national standards. The maximum sag for the normal span of the conductor should be added to the minimum ground clearance to get the staging height of the tower, i.e. the vertical distance from the ground level to the bottom of the lowest cross arm.


GROUND-WIRE PEAK:


Ground-wire peaks are provided to support the ground-wires, which shield the tower from lightning and provide earthing to the tower. The height of the ground-wire peak is chosen in such a way that the cross arm falls within the shield angle. The bottom width of the ground-wire peak is assumed equal to the top hamper width and is normally 0.75m to lm.


CROSS-ARM SPACING:


Cross arms are provided to support the transmission line power conductors. The number of circuits carried by the tower determines the number of cross arms. In general three cross arms for single circuit towers and six cross arms for double circuit towers are required. The vertical spacing between the cross arms must satisfy the minimum clearance between circuit lines and other electrical requirements. The minimum horizontal clearance required between the conductors and the tower steel is based on the swing conditions, and it determines the length of the cross arm. The depth of the cross arm is assumed in general such that the angle at the tip of the arm is in the range of 15 to 20 degrees.


BASE WIDTH:


The base width of the tower is determined heuristically. For example, the ratio of base width to total height may vary from one-tenth for tangent towers to one-fifth for large angle tower. Also, there are formulae for preliminary determination of economical base width. The widths may be varied to satisfy other constraints like foundation design and land availability.


TOP HAMPER WIDTH:


Top hamper width is the width of the tower at lower cross-arm level. The top hamper width is also determined heuristically and is generally about one third of the base width. Other parameters like horizontal spacing between conductors and slope of the leg may also be considered while determining the top hamper width.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...