Skip to main content

STAR TOPOLOGIES AND ITS ADVANTAGES AND DISADVANTAGES

In a star topology, all computers are connected through one central device known as a hub or a switch, as illustrated in Figure 1. Each workstation has a cable that goes from the network card to the hub device. One of the major benefits of a star topology is that a break in the cable causes only the workstation that is connected to the cable to go down, not the entire network, as with a bus topology. Star topologies are very popular topologies in today’s networking environments.
Figure 1: Star Topology
ADVANTAGES OF A STAR TOPOLOGY:
One advantage of a star topology is scalability and ease of adding another system to the network. If you need to add another workstation to the network with a star topology, you simply connect that system to an unused port on the hub. Another benefit is the fact that if there is a break in the cable it affects only the system that is connected to that cable. Figure 1-7 shows a hub with a few ports available. Centralizing network components can make an administrator’s life much easier in the long run. Centralized management and monitoring of network traffic can be vital to network success. With a star configuration, it is also easy to add or change configurations because all of the connections come to a central point.
Figure 2: Hub
DISADVANTAGES OF A STAR TOPOLOGY:
On the flip side, if the hub fails in a star topology, the entire network comes down, so we still have a central point of failure. But this is a much easier problem to troubleshoot than trying to find a cable break with a bus topology. Another disadvantage of a star topology is cost. To connect each workstation to the network, you will need to ensure that there is a hub with an available port, and you will need to ensure you have a cable to go from the workstation to the hub. Today, the cost is increasingly less of a disadvantage because of the low prices of devices such as hubs and switches.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...