Skip to main content

EMF EQUATION OF A TRANSFORMER

The magnetic flux ϕ set up in the core of a transformer when an alternating voltage is applied to its primary winding is also alternating and is sinusoidal.

Let ϕm be the maximum value of the flux and f be the frequency of the supply. The time for 1 cycle of the alternating flux is the periodic time T, where T = (1/f) seconds

The flux rises sinusoidally from zero to its maximum value in (1/4) cycle, and the time for (1/4) cycle is (1/4f) seconds. Hence the average rate of change of flux = (ϕm/ (1/4f)) = 4f ϕm Wb/s, and since 1Wb/s D 1 volt, the average emf induced in each turn = 4f ϕm volts. As the flux ϕ varies sinusoidally, then a sinusoidal emf will be induced in each turn of both primary and secondary windings.
For a sine wave,
Form Factor = r.m.s Value / Average Value
= 1.11
Hence r.m.s. value = form factor*average value = 1.11 * average value Thus r.m.s. e.m.f. induced in
each turn
=1.11 * 4fϕm volts
=4.44fϕm volts
Therefore, r.m.s. value of e.m.f. induced in primary,
E1 = 4.44 f ϕmN1 volts
and r.m.s. value of e.m.f. induced in secondary,
E2 = 4.44 f 8ϕN2 volts
Dividing E1 by E2
E1E2=N1N2

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...