Skip to main content

WHAT IS LOAD FLOW STUDIES

Load flow studies are important in planning and designing future expansion of power systems. The study gives steady state solutions of the voltages at all the buses, for a particular load condition. Different steady state solutions can be obtained, for different operating conditions, to help in planning, design and operation of the power system.

Generally, load flow studies are limited to the transmission system, which involves bulk power transmission. The load at the buses is assumed to be known. Load flow studies throw light on some of the important aspects of the system operation, such as: violation of voltage magnitudes at the buses, overloading of lines, overloading of generators, stability margin reduction, indicated by power angle differences between buses linked by a line, effect of contingencies like line voltages, emergency shutdown of generators, etc. Load flow studies are required for deciding the economic operation of the power system. They are also required in transient stability studies. Hence, load flow studies play a vital role in power system studies.
Thus the load flow problem consists of finding the power flows (real and reactive) and voltages of a network for given bus conditions. At each bus, there are four quantities of interest to be known for further analysis: the real and reactive power, the voltage magnitude and its phase angle. Because of the nonlinearity of the algebraic equations, describing the given power system, their solutions are obviously, based on the iterative methods only. The constraints placed on the load flow solutions could be:
  • The Kirchhoff’s relations holding well,
  • Capability limits of reactive power sources,
  • Tap-setting range of tap-changing transformers,
  • Specified power interchange between interconnected systems,
  • Selection of initial values, acceleration factor, convergence limit, etc.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...