The concept of the ideal switch is important when evaluating circuit topologies. Assumptions of zero-voltage drop, zero-leakage current, and instantaneous transitions make it easier to simulate and model the behavior of various electrical designs. Using the characteristics of an ideal switch, there are three classes of power switches:
- UNCONTROLLED SWITCH:
The switch has no control terminal. The state of the switch is determined by the external voltage or current conditions of the circuit in which the switch is connected. A diode is an example of such switch.
- SEMI-CONTROLLED SWITCH:
In this case the circuit designer has limited control over the switch. For example, the switch can be turned-on from the control terminal. However, once ON, it cannot be turned-off from the control signal. The switch can be switched off by the operation of the circuit or by an auxiliary circuit that is added to force the switch to turn-off. A thyristor or a SCR is an example of this switch type.
- FULLY CONTROLLED SWITCH:
The switch can be turned-on and off via the control terminal. Examples of this switch are the BJT, the MOSFET, the IGBT, the GTO thyristor, and the MOS-controlled thyristor (MCT).
Comments