Skip to main content

CHARACTERISTICS OF MOVING COIL METER MOVEMENT

Following are few characteristics of Moving Coil Meter Movement.

(1) Full-scale deflection current (Im),
(2) Internal resistance of the coil (Rm),
(3) Sensitivity (S).

1. FULL-SCALE DEFLECTION CURRENT (IM)
It is the current needed to deflect the pointer all the way to the right to the last mark on the calibrated scale. Typical values of Im for D’ Arsonval movement vary from 2 μA to 30 mA.

It should be noted that for smaller currents, the number of turns in the moving coil has to be more so that the magnetic field produced by the coil is strong enough to react with the field of the permanent magnet for producing reasonable deflection of the pointer.


Fine wire has to be used for reducing the weight of the moving coil but it increases its resistance. Heavy currents need thick wire but lesser number of turns so that resistance of the moving coil is comparatively less. The schematic symbol is shown in Figure.
2. INTERNAL RESISTANCE (RM)
It is the dc ohmic resistance of the wire of the moving coil. A movement with smaller Im has higher Rm and vice versa. Typical values of Rm range from 1.2 Ω for a 30 mA movement to 2 kΩ for a 50 μA movement.

3. SENSITIVITY (S)
It is also known as current sensitivity or sensitivity factor. It is given by the reciprocal of full scale deflection current Im.
S=1/ Im  ohms/volt

The sensitivity of a meter movement depends on the strength of the permanent magnet and number of turns in the coil. Larger the number of turns, smaller the amount of current required to produce full-scale deflection and, hence, higher the sensitivity. A high current sensitivity means a high quality meter movement. It also determines the lowest range that can be covered when the meter movement is modified as an ammeter or voltmeter.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...