Skip to main content

THREE PHASE SYSTEMS

In a single-phase ac circuit, instantaneous power to a load is of a pulsating nature. Even at unity power factor (i.e., when the voltage and the current are in phase with respect to each other), the instantaneous power is less than unity (i.e., when the voltage and the current are not in phase). The instantaneous power is not only zero four times in each cycle but it is also negative twice in each cycle. Therefore, because of economy and performance, almost all electrical power is produced by polyphase sources (i.e., by those generating voltages with more than one phase.
A polyphase generator has two or more single phases connected so that they provide loads with voltages of equal magnitudes and equal phase differences. For example, in a balanced n-phase system, there are n voltage sources connected together. Each phase voltage (or source) alternates sinusoidally, has the same magnitudes, and has a phase difference of 360/n° (where n is the number of phases) from its adjacent voltage phasors, except in the case of two-phase systems. Generators of 6, 12, or even 24 phases are sometimes used with polyphase rectifiers to supply power with low levels of ripples in voltage on the do side in the range of kilowatts. Today, virtually all the power produced in the world is three-phase power with a frequency of 50 or 60 Hz. In the United States, 60 Hz is the standard frequency. Recently, six-phase power transmission lines have been proposed because of their ability to increase power transfer over existing lines and reduce electrical environmental impact. Even though other polyphase systems are feasible, the power utility industry has adopted the use of three-phase systems as the standard. Consequently, most of the generation, transmission, distribution, and heavy-power utilization of electrical energy are done using three-phase systems. A three-phase system is supplied by a three-phase generator (i.e., alternator), which consists essentially of three single-phase systems displaced in time phase from each other by one-third of a period, or 120 electrical degrees. The advantages of three-phase systems over single-phase systems are as follows:

• Less conductor material is required in the three-phase transmission of power and therefore it is more economical.
• Constant rotor torque and therefore steady machine output can be achieved.
• Three-phase machines (generators or motors) have higher efficiencies.
• Three-phase generators may be connected in parallel to supply greater power more easily than single-phase generators.
Figure 1(a) shows the structure of an elementary three-phase and two-pole ac generator (also called an alternator). Its structure has basically two parts: the stationary outside part which is called the stator and the rotating inside part which is called the rotor. The field winding is located on the rotor and is excited by a direct current source through slip rings located on the common shaft. Thus, an alternator has a rotating electromagnetic field; however, its stator windings are stationary. The elementary generator shown in Figure (1)a has three identical stator coils (aa', bb', and cc'), of one or more turns, displaced by 120° in space with respect to each other. If the rotor is driven counterclockwise at a constant speed, voltages will be generated in the three phases according to Faraday’s law, as shown in Figure (1)b. Notice that the stator windings constitute the armature of the generator (unlike dc machines where the armature is the rotor). Thus, the field rotates inside the armature. Each of the three stator coils makes up one phase in this single generator. Figure (1)b shows the generated voltage waveforms in time domain, while Figure (1)c shows the corresponding phasors of the three voltages. The stator phase windings can be connected in either wye or delta. In wye configuration, if a neutral conductor is brought out, the system is defined as a four-wire three-phase system; otherwise, it is a three-wire, three-phase system. In a delta connection, no neutral exists and therefore it is a three-wire three-phase system.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

DIFFERENCE BETWEEN GRID STATION AND SUB STATION

An electrical power substation is a conversion point between transmission level voltages (such as 138 KV) and distribution level voltages (such as 11 KV). A substation has one or more step-down transformers and serves a regional area such as part of a city or neighborhood. Substations are connected to each other by the transmission ring circuit. An electrical grid station is an interconnection point between two transmission ring circuits, often between two geographic regions. They might have a transformer, depending on the possibly different voltages, so that the voltage levels can be adjusted as needed. The interconnected network of grid stations is called the grid, and may ultimately represent an entire multi-state region. In this configuration, loss of a small section, such as loss of a power station, does not impact the grid as a whole, nor does it impact the more localized neighborhoods, as the grid simply shifts its power flow to compensate, giving the power station o...

AC Transmission Line and Reactive Power Compensation: A Detailed Overview

  Introduction The efficient operation of modern power systems depends significantly on the management of AC transmission lines and reactive power. Reactive power compensation is a vital technique for maintaining voltage stability, improving power transfer capability, and reducing system losses. This article explores the principles of AC transmission lines, the need for reactive power compensation, and its benefits in power systems. Keywords: Reactive Power Compensation Benefits, STATCOM vs SVC Efficiency, Power Transmission Stability Solutions, Voltage Stability in Long-Distance Grids, Dynamic Reactive Power Compensation.      Fundamentals of AC Transmission Lines AC transmission lines are the backbone of modern power systems, connecting generation stations to distribution networks. They have distributed electrical parameters such as resistance ( R R R ), inductance ( L L ), capacitance ( C C ), and conductance ( G G ) along their length. These parameters influence ...

CLASSIFICATION OF POWER SYSTEM BUSES

Each bus in the system has four variables: voltage magnitude, voltage angle, real power and reactive power. During the operation of the power system, each bus has two known variables and two unknowns. Generally, the bus must be classified as one of the following bus types: 1. SLACK OR SWING BUS This bus is considered as the reference bus. It must be connected to a generator of high rating relative to the other generators. During the operation, the voltage of this bus is always specified and remains constant in magnitude and angle. In addition to the generation assigned to it according to economic operation, this bus is responsible for supplying the losses of the system. 2. GENERATOR OR VOLTAGE CONTROLLED BUS During the operation the voltage magnitude at this the bus is kept constant. Also, the active power supplied is kept constant at the value that satisfies the economic operation of the system. Most probably, this bus is connected to a generator where the voltage i...