Skip to main content

THREE PHASE SYSTEMS

In a single-phase ac circuit, instantaneous power to a load is of a pulsating nature. Even at unity power factor (i.e., when the voltage and the current are in phase with respect to each other), the instantaneous power is less than unity (i.e., when the voltage and the current are not in phase). The instantaneous power is not only zero four times in each cycle but it is also negative twice in each cycle. Therefore, because of economy and performance, almost all electrical power is produced by polyphase sources (i.e., by those generating voltages with more than one phase.
A polyphase generator has two or more single phases connected so that they provide loads with voltages of equal magnitudes and equal phase differences. For example, in a balanced n-phase system, there are n voltage sources connected together. Each phase voltage (or source) alternates sinusoidally, has the same magnitudes, and has a phase difference of 360/n° (where n is the number of phases) from its adjacent voltage phasors, except in the case of two-phase systems. Generators of 6, 12, or even 24 phases are sometimes used with polyphase rectifiers to supply power with low levels of ripples in voltage on the do side in the range of kilowatts. Today, virtually all the power produced in the world is three-phase power with a frequency of 50 or 60 Hz. In the United States, 60 Hz is the standard frequency. Recently, six-phase power transmission lines have been proposed because of their ability to increase power transfer over existing lines and reduce electrical environmental impact. Even though other polyphase systems are feasible, the power utility industry has adopted the use of three-phase systems as the standard. Consequently, most of the generation, transmission, distribution, and heavy-power utilization of electrical energy are done using three-phase systems. A three-phase system is supplied by a three-phase generator (i.e., alternator), which consists essentially of three single-phase systems displaced in time phase from each other by one-third of a period, or 120 electrical degrees. The advantages of three-phase systems over single-phase systems are as follows:

• Less conductor material is required in the three-phase transmission of power and therefore it is more economical.
• Constant rotor torque and therefore steady machine output can be achieved.
• Three-phase machines (generators or motors) have higher efficiencies.
• Three-phase generators may be connected in parallel to supply greater power more easily than single-phase generators.
Figure 1(a) shows the structure of an elementary three-phase and two-pole ac generator (also called an alternator). Its structure has basically two parts: the stationary outside part which is called the stator and the rotating inside part which is called the rotor. The field winding is located on the rotor and is excited by a direct current source through slip rings located on the common shaft. Thus, an alternator has a rotating electromagnetic field; however, its stator windings are stationary. The elementary generator shown in Figure (1)a has three identical stator coils (aa', bb', and cc'), of one or more turns, displaced by 120° in space with respect to each other. If the rotor is driven counterclockwise at a constant speed, voltages will be generated in the three phases according to Faraday’s law, as shown in Figure (1)b. Notice that the stator windings constitute the armature of the generator (unlike dc machines where the armature is the rotor). Thus, the field rotates inside the armature. Each of the three stator coils makes up one phase in this single generator. Figure (1)b shows the generated voltage waveforms in time domain, while Figure (1)c shows the corresponding phasors of the three voltages. The stator phase windings can be connected in either wye or delta. In wye configuration, if a neutral conductor is brought out, the system is defined as a four-wire three-phase system; otherwise, it is a three-wire, three-phase system. In a delta connection, no neutral exists and therefore it is a three-wire three-phase system.

Comments

Popular posts from this blog

CLASSIFICATION OF POWER SYSTEM STABILITY

Power system stability is a single problem, however, it is impractical to deal with it as such. Instability of the power system can take different forms and is influenced by a wide range of factors. Analysis of stability problems, including identifying essential factors that contribute to instability and devising methods of improving stable operation is greatly facilitated by classification of stability into appropriate categories. These are based on the following considerations: Ø The physical nature of the resulting instability related to the main system parameter in which instability can be observed. Ø The size of the disturbance considered indicates the most appropriate method of calculation and prediction of stability. Ø The devices, processes, and the time span that must be taken into consideration in order to determine stability. Figure 7.1 Possible classification of power system stability into various categories and subcategories. 1) ROTOR ANGLE STABILITY:  Ro...

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

Factors Affecting Corona in Overhead Transmission Lines

Factors Affecting Corona in Overhead Transmission Lines Author: Engr. Aneel Kumar Figure 1: Infographic illustrating the factors influencing corona discharge in transmission lines. Introduction The corona effect in overhead transmission lines is a phenomenon that occurs when the electric field intensity around conductors exceeds a critical value, causing ionization of the surrounding air. This ionization produces bluish light, hissing sound, power loss, and ozone gas. While corona may seem undesirable, it also has a few advantages such as reducing overvoltages by absorbing surges. Corona directly impacts power system efficiency, transmission losses, equipment life, and design cost . Therefore, engineers must understand the factors affecting corona in detail to ensure efficient and reliable design of high-voltage transmission systems. 1. Conductor Size (Diameter) ...