Skip to main content

OPERATING PRINCIPLE OF A GATE TURNOFF THYRISTOR GTO

GTO being a monolithic p-n-p-n structure just like a thryistor its basic operating principle can be explained in a manner similar to that of a thyristor. In particular, the p-n-p-n structure of a GTO can be though of consisting of one p-n-p and one n-p-n transistor connected in the regenerative configuration as shown in Figure.
Figure: Current distribution in a GTO (a) During turn on; (b) During turn off. 

With applied forward voltage VAK less than the forward break over voltage both ICBO1 and ICBO2 are small. Further if IG is zero IA is only slightly higher than (ICBO1 + ICBO2). Under this condition both ∝n and ∝p are small and (∝p + ∝n) <<1. The device is said to be in the forward blocking mode.

TURNING ON PROCESS OF GTO


To turn the device on either the anode voltage can be raised until ICBO1 and ICBO2 increases by avalanche multiplication process or by injecting a gate current. The current gain ∝ of silicon transistors rises rapidly as the emitter current increases. Therefore, any mechanism which causes a momentary increase in the emitter current can be used to turn on the device. Normally, this is done by injecting current into the p base region via the external gate contract. As ∝n + ∝p approaches unity the anode current tends to infinity. Physically as ∝n + ∝p nears unity the device starts to regenerate and each transistor drives its companion into saturation. Once in saturation, all junctions assume a forward bias and total potential drop across the device becomes approximately equal to that of a single p-n diode. The anode current is restricted only by the external circuit. Once the device has been turned on in this manner, the external gate current is no longer required to maintain conduction, since the regeneration process is self-sustaining. Reversion to the blocking mode occurs only when the anode current is brought below the “holding current” level.

TURN-OFF PROCESS OF GTO

To turn off a conducting GTO the gate terminal is biased negative with respect to the cathode. The holes injected from the anode are, therefore, extracted from the p base through the gate metallization into the gate terminal (Figure b). The resultant voltage drop in the p base above the n emitter starts reverse biasing the junction J3 and electron injection stops here. The process originates at the periphery of the p base and the n emitter segments and the area still injecting electron shrinks. The anode current is crowded into higher and higher density filaments in most remote areas from the gate contact. This is the most critical phase in the GTO turn off process since highly localized high temperature regions can cause device failure unless these current filaments are quickly extinguished. When the last filament disappears, electron injection stops completely and depletion layer starts to grow on both J2 and J3. At this point the device once again starts blocking forward voltage. However, although the cathode current has ceased the anode to gate current continues to flow (Figure b) as the n base excess carriers diffuse towards J1. This “tail current” then decays exponentially as the n base excess carriers reduce by recombination. Once the tail current has completely disappeared does the device regain its steady state blocking characteristics. “Anode Shorts” (or transparent emitter) helps reduce the tail current faster by providing an alternate path to the n base electrons to reach the anode contact without causing appreciable hole injection from anode.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...