Skip to main content

POWER QUALITY SOLUTIONS

There are four ways to solve power quality problems:

1- Design equipment and electrical systems to prevent electrical disturbances from causing equipment or systems to malfunction. Where, manufactures of sensitive equipment can reduce or eliminate the effect of power quality problems by designing their equipment to be less sensitive to disturbances. They can add some devices to their equipment according to situation, for instance a capacitor to provide temporary energy storage when the voltage sags are too low. They can also alter their equipment to desensitize it to power quality problem for example; they can design special K factor transformers that tolerate harmonics.
2- Analyze the symptoms of power quality problems to determine its cause and solution. It is important to determine source and type of power quality problems, the type of power quality problem and its cause often determine the solution.

3-Identify the medium that is transmitting the electrical disturbances and reduce or eliminate the effect of that medium.

4- Treat the symptoms of the power quality problems by use of power conditioning equipment. It provides essential protection against disturbances. Power conditioning equipment include devices that reduce or eliminate the effect of a power quality disturbance. It can be used to condition the source, the transmitter, or the receiver of the power quality problems. The equipment can be divided into ten categories, surge suppressors, noise filter, isolation transformer, low-voltage line reactors, various line voltage regulators, motor-generator sets, dual feeders with static transfer, uninterruptible power supplies, harmonic filters and Dynamic voltage restorer (DVR).

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...