Skip to main content

TRANSFORMER EXTERNAL FAULTS

External faults are those faults or hazards that occur outside the transformer. These hazards present stresses on the transformer that may be of concern and may shorten the transformer life. These faults include the following.

• OVER LOADS

Overloads cause the transformer to overheat and have the potential to cause permanent damage or loss of life to the unit. The time constant for overheating is long, however, and it may take many hours of exposure for the condition to become serious. In most cases, no protection is provided for overload, but an alarm will often be used to warn operating personnel of the condition. One cause of overload may be due to unequal load sharing of parallel transformers or unbalanced loading of three-phase banks.

• OVER VOLTAGE

Over-voltage can be either due to short-term transient conditions or long term power-frequency conditions. Transient over-voltages cause end-tum stresses and possible breakdown. These transients are protected against by surge protective devices that are designed for this purpose. Power frequency over-voltages occur due to an emergency operating condition, such as a sudden loss of load on an isolated portion the system that causes the voltage to rise. This condition causes over-ftuxing of the transformer and an increase in stress on the winding insulation. Over-fluxing increases iron losses and may result in a large increase in exciting current. Such conditions result in rapid heating of the iron circuits of the transformer, with possible damage to core lamination insulation and even to winding insulation.

• UNDER FREQUENCY

Under frequency also is caused by a major system disturbance that causes an imbalance between generation and load. The condition is similar to overvoltage in that exciting current is greatly increased at low frequencies, causing over-fluxing of the transformer iron circuits. The transformer may be able to continue operation at either high voltage or under-frequency, but the two conditions experienced at the same time could be very serious. Usually, the ratio of voltage to frequency should not be allowed to exceed 1.1 per unit, which is usually called a "volts per hertz" limit.

• EXTERNAL SYSTEM SHORT CIRCUITS

System faults that are external to the transformer protection zone, but cause high transformer currents, can cause transformer winding damage. Large external fault currents cause high mechanical stress in the transformer windings, with the maximum stress occurring during the first cycle. This short time frame makes it almost impossible to protect the transformer from experiencing these stresses. The protection strategy for these events is, therefore, a matter of transformer design.

Most of the foregoing conditions are often ignored in specifying transformer relay protection, depending on the criticality of the transformer and its importance in the system. The exception is protection against over-fluxing, which may be provided by devices called "volts per hertz" relays, which detect either high voltage or under frequency, or both, and will disconnect the transformer if this quantity exceed a given limit, which is usually 1.1 per unit.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...