Skip to main content

GENERATOR OVERSPEED PROTECTION

It has been noted above that over-speed causes overvoltage, which may be protected against using overvoltage relays. Basically, however, over-speed control is part of the turbine control system. Most large steam turbine controls have two or three separate speed control units, with one of these being strictly a mechanical centrifugal device that will close the turbine control valves even if electrical power is lost to the controls that require electric input.

Over-speed protection must be selective and must not shut the unit down due to a temporary loss of load, even if the cause is serious, for example, a short circuit. Short circuits anywhere near a generator will collapse the voltage and the generator experiences a loss of load. Since the turbine power is unchanged, the turbine-generator unit will over-speed until the governor throttles the turbine input back. Faults are usually temporary, however, and there is no need to shut the unit down unless the fault is on the generator or GSU transformer. Other nearby faults have exactly the same effect on the generator, however, and the protections must be designed to discriminate. Faults in the generator or step-up transformer will trip the unit before over-speed can become a problem. Nearby transmission faults should not trip the unit, however.
Most large steam turbine units have protective devices that are designed to distinguish between a load rejection and a fault. Both cause over-speed and a sudden loss of generated power, but the generator current behavior is quite different. Faults cause an increase in current, while load rejection causes a decrease in current. The generator should not be tripped for the fault condition, assuming that it is not a generator or transformer fault, but the generator will have to be tripped if the load is lost permanently. Turbine controls are designed to make this distinction, to run back in the case of load rejection and to do nothing in the case of a network fault except the usual speed governing reaction.

These turbine controls are outside the scope of this book, but there are cases where there needs to be coordination between the protective actions taken on the electrical side with those taken in the power plant. In the case of over-speed, backup protection can be interlocked with the turbine controls that will monitor bus frequency and order a generator trip if this frequency becomes too high. Obviously, this must be coordinated with the turbine controls

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

DIFFERENCE BETWEEN GRID STATION AND SUB STATION

An electrical power substation is a conversion point between transmission level voltages (such as 138 KV) and distribution level voltages (such as 11 KV). A substation has one or more step-down transformers and serves a regional area such as part of a city or neighborhood. Substations are connected to each other by the transmission ring circuit. An electrical grid station is an interconnection point between two transmission ring circuits, often between two geographic regions. They might have a transformer, depending on the possibly different voltages, so that the voltage levels can be adjusted as needed. The interconnected network of grid stations is called the grid, and may ultimately represent an entire multi-state region. In this configuration, loss of a small section, such as loss of a power station, does not impact the grid as a whole, nor does it impact the more localized neighborhoods, as the grid simply shifts its power flow to compensate, giving the power station o...

Types of Transmission Towers in Saudi Electricity Company (SEC) – NGSA Standards

 The Kingdom of Saudi Arabia (KSA) is rapidly expanding its energy infrastructure projects to meet the growing demand for electricity. At the heart of this growth lies the high voltage transmission network , which delivers reliable power from generation plants to cities, industries, and remote areas. To ensure safety and efficiency, the Saudi Electricity Company (SEC) follows strict NGSA (National Grid Saudi Arabia) standards for designing and selecting transmission towers . These lattice steel towers are engineered to withstand extreme desert conditions, high wind loads, and long transmission spans. In this article, we will explore the different types of transmission towers in Saudi Arabia , their applications, and how they contribute to the power transmission system design . Why Transmission Towers Are Crucial in Power Grid Development Every kilometer of transmission line construction requires careful planning. The right tower design ensures: Stable support for 69k...

REVERSING DIRECTION OF ROTATION OF UNIVERSAL MOTOR

The direction of rotation of a universal motor can be changed by either: (i) Reversing the field connection with respect to those of armature; or (ii) By using two field windings wound on the core in opposite directions so that the one connected in series with armature gives clockwise rotation, while the other in series with the armature gives counterclockwise rotation. The second method, i.e, the two field method is used in applications such as motor operated rheostats and servo systems. This method has somewhat simpler connections than the first method. For simple applications like portable drills etc. manual switches are frequently used for reversing the direction of rotation of the motor. Figure  1 (a and b) shows how a DPDT (Double Pole Double Throw) switch and a three position switch may be used for reversing the direction of rotation of single field and double field type of motors respectively. Figure 1 Reversing of a universal motor (a) Armature re...