Skip to main content

SYNCHRONOUS MACHINE ROTOR TYPES

The magnetic rotor field is generated by a field winding F on the rotor which is fed with an adjustable direct current. In addition, the rotor has a short circuited damper winding D at the surface. This winding serves to dampen electrical and mechanical oscillations and to shield the field winding from inverse rotating fields in case of asymmetries or harmonics in the stator currents. (In rotors without an explicitly realized damper winding, eddy currents in the rotor iron can have a similar effect.) Depending on the application of the generator, two different types of rotors are used that are shown in Figure.
Figure: Cross-sections through different rotor types.

ROUND ROTOR

Round rotors are used with high-speed turbines such as steam or gas turbines. For this reason, generators with round rotors are also called turbo generators. They can have ratings as high as 1800 MVA per unit. Due to the large centrifugal forces, the rotor consists of a long, narrow, solid steel cylinder.

The field windings are mounted in slots that are mill-cut into about 2/3 of the perimeter. Because of the discrete distribution of the windings on the rotor surface, the magnetic flux density in the air gap always has a stair-step form. Through proper distribution of the windings these stair-steps can be made approximately sinusoidal!

SALIENT POLE ROTOR

Salient pole rotors are used with low-speed hydro turbines with rated powers of up to 800 MVA per unit. In order to obtain the appropriate electrical power frequency in spite of the low rotor speed, salient pole rotors typically have multiple pole pairs. For run-of-river power stations the number of poles can be as high as p = 200! Such rotors have very large diameters (several meters) and short lengths.

The field windings are mounted on the individual poles. By properly designing the geometric form of the poles, the magnetic flux density in the air gap at the stator surface can also be made approximately sinusoidal!

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...