Skip to main content

IMPORTANCE OF SHORT CIRCUIT CURRENTS

Knowledge of short circuit current values is necessary for the following reasons.

1. Fault currents which are several times larger than the normal operating currents produce large electro-magnetic forces and torques which may adversely affect the stator end windings. The forces on the end windings depend on both the dc and ac components of stator currents.

2. The electro dynamic forces on the stator end windings may result in displacement of the coils against one another. This may result in loosening of the support or damage to the insulation of the windings.

3. Following a short circuit, it is always recommended that the mechanical bracing of the end windings to checked for any possible loosening.

4. The electrical and mechanical forces that develop due to a sudden three phase short circuit are generally severe when the machine is operating under loaded condition.

5. As the fault is cleared within 3 cycles generally the heating efforts are not considerable.

Short circuits may occur in power systems due to system over voltages caused by lightning or switching surges or due to equipment insulation failure or even due to insulator contamination. Sometimes even mechanical causes may create short circuits. Other well-known reasons include line-to-line, line-to-ground, or line-to-line faults on overhead lines. The resultant short circuit has to the interrupted within few cycles by the circuit breaker.

It is absolutely necessary to select a circuit breaker that is capable of operating successfully when maximum fault current flows at the circuit voltage that prevails at that instant. An insight can be gained when we consider an R-L circuit connected to an alternating voltage source, the circuit being switched on through a switch.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...