Skip to main content

THE PURPOSE OF EQUIPMENTS SPECIFICATIONS

The main purpose of preparing a specification for an item of equipment is to ensure that the purchaser, who may also become the owner, obtains the equipment required, rather than what the supplier or manufacturer thinks the purchaser should have. In many situations the difference in perception of the requirements may be small and insignificant. However, for complicated equipment such as high-voltage switchgear and generation systems the differences may be very significant.

In order to satisfy both the requirements of the owner and the available options from the supplier, it is necessary to describe the requirements in various degrees of detail. The degree of detail will be a function of the type of equipment. Complex equipment such as large motors, generators, high-voltage switchgear and variable speed drive systems will need a more detailed description than the more standardized equipment such as power cables, low-voltage motors and, to some extent, low-voltage motor control centers.

Manufacturers of complex equipment regularly meet the needs of different owners, whose requirements vary in content and emphasis. A particular owner may have different requirements for the same type of equipment when it is used in offshore, as opposed to onshore, installations. These environments may be radically different, e.g. Northern North Sea, desert conditions in the Middle East, hot and humid climates of tropical locations. For example, the methods of cooling the equipment and the ability to withstand corrosive conditions will be very different in these extremes of environment.

On the other hand, simple equipment is less sensitive to extremes of location and environment. The main aspect that affects simple equipment is its full-load rating for low and high ambient temperatures. The details of the construction will be almost unaffected. Simple equipment used in high ambient temperatures will tend to be physically larger and heavier. A motor of a given shaft output rating may have a larger standard frame size when used in a desert than one used on a North Sea production platform.

A standard specification of the owner should take account of what is generally available in the market, and what can reasonably be called for as options. It is uneconomical and impractical to over specify aspects which a manufacturer cannot fulfill at a reasonable cost and with sensible production duration. Where possible the aim should be to match what the manufacturer can offer from his standard range of equipment. An efficient approach by the purchaser is to call for equipment that is a standard but most suitable product of the manufacturer plus the options offered, if these are needed, and then design the power system around the equipment to be purchased. In general this will also reduce the amount of time needed to design the power system.

For some types of projects there has become an emphasis on ‘functionality’ when specifications are being prepared. Care needs to be exercised in describing functional aspects of a specification. Most people understand the function of basic equipment such as generators, motors and switch gear and yet, in order to obtain what is ultimately required, it is necessary to pay attention to design and performance details. Functionality implies a more interrelated type of existence, as is the case with systems of equipment rather than individual items of equipment. A few good examples of applying a functional approach in the specification of process control systems are SCADA systems, modern protective relaying systems, variable speed drive systems and power management control systems. These equipments comprise a system of computers, measuring devices, controller set points, switchgear and rotating machines. Here the whole system must be functionally defined, and all the individual elements must be fully compatible from the conceptual stage of the specification.

With most specifications there are some key aspects that should be clearly stated or defined, the omission of which can cause embarrassment, delay and extra costs at a later date e.g. at the factory inspection, during installation and commissioning. A well-designed data sheet to accompany the specification will do much to avoid ambiguity or the omission of requirements. The data sheet should comprise two parts, a part completed by the purchaser to define the requirements and a corresponding part for the manufacturer to state what is offered.

The content of the specification should bear a relationship to the importance of the equipment in the power system and to its capital cost. If the content is too brief or too general then it may not satisfy the intended purpose of the specification and inferior equipment may be chosen.

In summary the requirements of the owner can be arranged in the following groups:

• Essential requirements
• Desirable requirements: Those which may be easily available in the market as options.
• Incidental requirements: Those which would be useful but not critical to the performance of the equipment. These may not be easily available, could be described as ‘nice to have’ and should therefore be avoided.

Comments

Popular posts from this blog

CLASSIFICATION OF POWER SYSTEM STABILITY

Power system stability is a single problem, however, it is impractical to deal with it as such. Instability of the power system can take different forms and is influenced by a wide range of factors. Analysis of stability problems, including identifying essential factors that contribute to instability and devising methods of improving stable operation is greatly facilitated by classification of stability into appropriate categories. These are based on the following considerations: Ø The physical nature of the resulting instability related to the main system parameter in which instability can be observed. Ø The size of the disturbance considered indicates the most appropriate method of calculation and prediction of stability. Ø The devices, processes, and the time span that must be taken into consideration in order to determine stability. Figure 7.1 Possible classification of power system stability into various categories and subcategories. 1) ROTOR ANGLE STABILITY:  Ro...

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

Factors Affecting Corona in Overhead Transmission Lines

Factors Affecting Corona in Overhead Transmission Lines Author: Engr. Aneel Kumar Figure 1: Infographic illustrating the factors influencing corona discharge in transmission lines. Introduction The corona effect in overhead transmission lines is a phenomenon that occurs when the electric field intensity around conductors exceeds a critical value, causing ionization of the surrounding air. This ionization produces bluish light, hissing sound, power loss, and ozone gas. While corona may seem undesirable, it also has a few advantages such as reducing overvoltages by absorbing surges. Corona directly impacts power system efficiency, transmission losses, equipment life, and design cost . Therefore, engineers must understand the factors affecting corona in detail to ensure efficient and reliable design of high-voltage transmission systems. 1. Conductor Size (Diameter) ...