Skip to main content

SCOPE OF OPTIMIZATION PROBLEMS

From a practical standpoint, we define the optimization task as follows: given a system or process, find the best solution to this process within constraints. This task requires the following elements:

• An OBJECTIVE FUNCTION is needed that provides a scalar quantitative performance measure that needs to be minimized or maximized. This can be the system’s cost, yield, profit, etc.

• A PREDICTIVE MODEL is required that describes the behavior of the system. For the optimization problem this translates into a set of equations and inequalities that we term constraints. These constraints comprise a feasible region that defines limits of performance for the system.

VARIABLES that appear in the predictive model must be adjusted to satisfy the constraints. This can usually be accomplished with multiple instances of variable values, leading to a feasible region that is determined by a subspace of these variables. In many engineering problems, this subspace can be characterized by a set of decision variables that can be interpreted as degrees of freedom in the process.

Optimization is a fundamental and frequently applied task for most engineering activities. However, in many cases, this task is done by trial and error (through case study). To avoid such tedious activities, we take a systematic approach to this task, which is as efficient as possible and also provides some guarantee that a better solution cannot be found.

The systematic determination of optimal solutions leads to a large family of methods and algorithms. Moreover, the literature for optimization is dynamic, with hundreds of papers published every month in dozens of journals. Moreover, research in optimization can be observed at a number of different levels that necessarily need to overlap but are often considered by separate communities:

• At the mathematical programming1 level, research focuses on understanding fundamental properties of optimization problems and algorithms. Key issues include existence of solutions, convergence of algorithms, and related issues such as stability and convergence rates.

• The scientific computing level is strongly influenced by mathematical properties as well as the implementation of the optimization method for efficient and “practical” use. Here research questions include numerical stability, ill-conditioning of algorithmic steps, and computational complexity and performance.

• At the level of operations research, attention is focused on formulation of the optimization problem and development of solution strategies, often by using well-established solution methods. Many of the problems encountered at this level consider well structured models with linear and discrete elements.

• At the engineering level, optimization strategies are applied to challenging, and often poorly defined, real-world problems. Knowledge of optimization at this level is engaged with the efficiency and reliability of applicable methods, analysis of the solution, and diagnosis and recovery from failure of the solution method.

From the above description of optimization research, it is clear that successful development of an optimization strategy within a given level requires a working knowledge of the preceding levels. For instance, while it is important at the mathematical programming level to develop the “right” optimization algorithm, at the engineering level it is even more important to solve the “right” optimization problem formulation. On the other hand, as engineers need to consider optimization tasks on a regular basis, a systematic approach with a fundamental knowledge of optimization formulations and algorithms is essential. It should be noted that this requires not only knowledge of existing software, which may have limited application to particularly difficult problems, but also knowledge of the underlying algorithmic principles that allow challenging applications to be addressed.

Popular posts from this blog

CLASSIFICATION OF POWER SYSTEM STABILITY

Power system stability is a single problem, however, it is impractical to deal with it as such. Instability of the power system can take different forms and is influenced by a wide range of factors. Analysis of stability problems, including identifying essential factors that contribute to instability and devising methods of improving stable operation is greatly facilitated by classification of stability into appropriate categories. These are based on the following considerations: Ø The physical nature of the resulting instability related to the main system parameter in which instability can be observed. Ø The size of the disturbance considered indicates the most appropriate method of calculation and prediction of stability. Ø The devices, processes, and the time span that must be taken into consideration in order to determine stability. Figure 7.1 Possible classification of power system stability into various categories and subcategories. 1) ROTOR ANGLE STABILITY:  Ro...

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

Factors Affecting Corona in Overhead Transmission Lines

Factors Affecting Corona in Overhead Transmission Lines Author: Engr. Aneel Kumar Figure 1: Infographic illustrating the factors influencing corona discharge in transmission lines. Introduction The corona effect in overhead transmission lines is a phenomenon that occurs when the electric field intensity around conductors exceeds a critical value, causing ionization of the surrounding air. This ionization produces bluish light, hissing sound, power loss, and ozone gas. While corona may seem undesirable, it also has a few advantages such as reducing overvoltages by absorbing surges. Corona directly impacts power system efficiency, transmission losses, equipment life, and design cost . Therefore, engineers must understand the factors affecting corona in detail to ensure efficient and reliable design of high-voltage transmission systems. 1. Conductor Size (Diameter) ...

Breaker Schemes in Substations

Breaker Schemes in Substations — Types, Design, Advantages, Disadvantages, and Comparison Author: Engr. Aneel Kumar Figure 1: Infographic overview of breaker schemes commonly used in substations. Introduction The breaker scheme or busbar arrangement in a substation defines how incoming feeders, outgoing feeders, and power transformers are connected to the bus. The choice of scheme has a direct impact on system reliability, maintainability, safety, and cost . A simple bus scheme is economical but vulnerable to outages, while advanced schemes such as breaker-and-a-half or double-bus/double-breaker provide very high reliability but at much higher cost and design complexity. Engineers select breaker schemes considering fault tolerance, maintenance needs, space requirements, expansion possibilities, protection coordination, and capital investment . Below, we explain eac...