Monday, December 22, 2014
LOAD LOSSES IN TRANSFORMER
The term load losses represents the losses in the transformer that result from the flow of load current in the win dings. Load losses are composed of the following elements.
Ideally, each conductor element should occupy ever y possible position in the array of strands such that all elements have the same resistance and the same induced EMF. Conductor transposition, however, involves some sacrifice of winding space. If the winding depth is small, one transposition halfway through the winding is sufficient; or in the case of a two-layer winding, the transposition can be located at the junction of the layers. Windings of greater depth need three or more transpositions. CTC cables are manufactured using transposing machines and are usually paper-insulated as part of the transposing operation.
Stray losses can be a constraint on high-reactance designs. Losses can be controlled by using a combination of magnetic shunts and/or conducting shields to channel the flow of leakage flux external to the windings into low-loss paths.
- Resistance losses as the current flows through the resistance of the conductors and leads.
- Eddy losses caused by the leakage field. These are a function of the second power of the leakage field density and the second power of the conductor dimensions normal to the field.
- Stray losses: The leakage field exists in parts of the core, steel structural members, and tank walls. Losses and heating result in these steel parts.
Stray losses can be a constraint on high-reactance designs. Losses can be controlled by using a combination of magnetic shunts and/or conducting shields to channel the flow of leakage flux external to the windings into low-loss paths.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment