Skip to main content

REQUIREMENTS OF SATISFACTORY ELECTRIC SUPPLY

The electric power system in India is 3-phase AC operating at a frequency of 50 Hz. The power station delivers power to consumers through its transmission and distribution systems. The power delivered must be characterized by constant or nearly constant voltage, dependability of service, balanced voltage, and efficiency so as to give minimum annual cost, sinusoidal waveform and freedom from inductive interference with telephone lines.

(1) VOLTAGE REGULATION: A voltage variation has a large effect upon the operation of both power machinery and lights. A motor is designed to have its best characteristics at the rated voltage and consequently a voltage that is too high or too low will result in a decrease in efficiency. If the fluctuations in the voltage are sudden, these may cause the tripping of circuit breakers and consequent interruptions to service. Usually the voltage at the generator terminals, where this is done, in some cases the voltage variations at the load may be made sufficiently small by keeping the resistance and reactance of the lines and feeders low.

(2) DEPENDABILITY: One important requirement of electric supply is to furnish uninterrupted service. The losses which an industrial consumer sustains due to the failure of electric power supply are usually vastly greater than the actual value of the power that he would use during this period. It is on account of the expense of idle workmen and machines and other overhead charges. Interruptions to service cause irritation and are sometimes positively dangerous to life and property. For example, failure of power in hospitals, in crowded theatres and stores may lead to very grave consequences.

Therefore, it is the duty of electric supply company to keep the power system going and to furnish uninterrupted service.

(3) BALANCED VOLTAGE: It is very important that the poly-phase voltage should be balanced. If an unbalanced poly-phase voltage is supplied to a consumer operating synchronous or induction motors, it will result in a decrease in the efficiency of his machinery and also a decrease in its maximum power output. Motors called upon to deliver full load when their terminal voltages are unbalanced are liable to considerable damage due to overheating. One method of maintaining balance of voltage is by having balanced loads connected to the circuit.

(4) EFFICIENCY: The efficiency of a transmission system is not of much importance in itself. The important economic feature of the design being the layout of the system as a whole so as to perform the requisite function of generating and delivering power with a minimum overall annual cost. The annual cost can be minimized to a considerable extent by taking care of power factor of the system. It is because losses in the lines and machinery are largely determined by power factor. Therefore, it is important that consumers having loads of low power factor should be penalized by being charged at a higher rate per kWh than those who take power at high power factors. Loads of low power factor also require greater generator capacity than those of high power factor (for the same amount of power) and produce larger voltage drops in the lines and transformers.

(5) FREQUENCY: The frequency of the supply system must be maintained constant. It is because a change in frequency would change the motor speed, thus interfering with the manufacturing operations.

(6) SINUSOIDAL WAVEFORM: The alternating voltage supplied to the consumers should have a sine waveform. It is because any harmonics which might be present would have detrimental effect upon the efficiency and maximum power output of the connected machinery. Harmonics may be avoided by using generators of good design and by avoidance of high flux densities in transformers.

(7) FREEDOM FROM INDUCTIVE INTERFERENCE: Power lines running parallel to telephone lines produce electrostatic and electromagnetic field disturbances. These fields tend to cause objectionable noises and hums in the apparatus connected to communication circuits. Inductive interference with telephone lines may be avoided by limiting as much as possible the amount of zero-sequence and harmonic current and by the proper transposition of both power lines and telephone lines.

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...