Skip to main content

INTERNAL RESISTANCE AND CAPACITY OF A CELL

The secondary cell possesses internal resistance due to which some voltage is lost in the form of potential drop across it when current is flowing. Hence, the internal resistance of the cell has to be kept to the minimum. One obvious way to lessen internal resistance is to increase the size of the plates. However, there is a limit to this because the cell will become too big to handle. Hence, in practice, it is usual to multiply the number of plate inside the cell and to join all the negative plates together and all the positives ones together as shown in below Figure.


The effect is equivalent to joining many cells in parallel. At the same time, the length of the electrolyte between the electrodes is decreased with a consequent reduction in the internal resistance. The ‘capacity’ of a cell is given by the product of current in amperes and the time in hours during which the cell can supply current until its EMF falls to 1.8 volt. It is expressed in ampere-hour (Ah).


The interlacing of plates not only decreases the internal resistance but additionally increases the capacity of the cell also. There is always one more negative plate than the positive plates i.e. there is a negative plate at both ends. This gives not only more mechanical strength but also assures that both sides of a positive plate are used.

Since in this arrangement, the plates are quite close to each other, something must be done to make sure that a positive plate does not touch the negative plate otherwise an internal short-circuit will take place. The separation between the two plates is achieved by using separators which, in the case of small cells, are made of treated cedar wood, glass, wool mat, micro porous rubber and mocroporous plastic and in the case of large stationary cells; they are in the form of glass rods.

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...