Skip to main content

NEW VERSUS EXISTING SUBSTATIONS

The design of new substations has the advantage of starting with a blank sheet of paper. The new substation will typically have many IEDs for different functions, and the majority of operational data for the SCADA system will come from these IEDs. The IEDs will be integrated with digital two-way communications. The small amount of direct input/output (hardwired) can be acquired using programmable logic controllers (PLC). Typically, there are no conventional remote terminal units (RTU) in new substations. The RTU functionality is addressed using IEDs and PLCs and an integration network using digital communications.



FIGURE 7.1 SA system functional architecture diagram.
In existing substations there are several alternative approaches, depending on whether the substation has a conventional RTU installed. The utility has three choices for their existing conventional substation RTUs: integrate RTU with IEDs; integrate RTU as another substation IED; and retire RTU and use IEDs and PLCs, as with a new substation. First, many utilities have integrated IEDs with existing conventional RTUs, provided the RTUs support communications with downstream devices and support IED communication protocols. This integration approach works well for the operational data path, but it does not support the nonoperational and remote access data paths. The latter two data paths must be done outside of the conventional RTU. Second, if the utility desires to keep their conventional RTU, the preferred approach is to integrate the RTU in the substation integration architecture as another IED. In this way, the RTU can be easily retired when the RTU hardwired direct input/output transitions to come primarily from the IEDs. Third, the RTUs may be old and difficult to support, and the substation automation project might be a good time to retire these older RTUs. The hardwired direct input/output from these RTUs would then come from the IEDs and PLCs, as with a new substation.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...