Skip to main content

ELECTRICAL POWER BALANCING AUTHORITIES AND ITS RESPONSIBILITIES

Balancing authorities are responsible for the performance of the electric system is to ensure that at every moment of time there is sufficient generation to reliably supply the customer requirements and all associated delivery system losses. The process is complicated by the fact that the customer load changes continuously and, therefore, the generation must adjust immediately, either up or down, to accommodate the load change. Since electric power cannot be stored, the generation change must be accomplished by a physical adjustment of the equipment generating the electricity.

The Balancing Authority Areas vary greatly in both geographic size and the amount of generation/ load they control.

AREA CONTROL

Each Balancing Authority is responsible for maintaining its own load/generation balance, including its scheduled interchange, either purchases or sales. A Balancing Authority can consist of a generator or group of generators, an individual company, or a portion of a company or a group of companies, providing that it meets certain certification criteria. Since minute-by-minute customer load changes are not known in advance, a system has been developed whereby generation changes are made in response to load changes. This system is based on the concept of the area control error. The sum of the internal generation within a Balancing Area and the net flow on its interties is equal to the customer load and all transmission losses within the area. The net power flow into/out of the area should be equal to the net of all transactions between parties in the area and parties outside the area. To determine the net schedule transactions, the various commercial interests that are within the area are required to notify the Balancing Authority personnel (via the Interchange Coordinator) of their bilateral contractual arrangements on an ongoing basis for either sales or purchases of electricity with entities outside the area’s boundaries. Additionally, neighboring operating entities engaged in transactions that will cause power to flow through the Balancing Area are required to notify the Balancing Authority (through the Interchange Authority) and to make provision for the attendant transmission losses.

With this information, the Balancing Authorities can compare the total scheduled interchange into or out of the control area with the actual interchange. If the flow into the area exceeds the schedule for that time period, internal generation must be increased. Conversely, if the net flow is below the schedule, generation within the area must be reduced. Operationally, this is an ongoing process conducted every few seconds. Since these adjustments are going on simultaneously in all balancing areas, the adjustments balance out.

Each Balancing Authority also participates in maintaining the average system frequency at 50 or 60 hertz. The system frequency can deviate from normal when a large generating unit or block of load is lost. In addition to adjustments made because of variations of tie flows from schedule, another adjustment is made to correct frequency deviations. Each Balancing Authority is required to have an adjustment factor related to frequency in its control logic. The term is called the tie-line frequency bias (expressed in mW/0.1 Hz).

Additionally, since the control process is responsive, there can be a drift in average system frequency, which, in turn, affects the accuracy of any electric clocks. This variation is monitored and for a period of time the target frequency reference is adjusted to produce the required compensation. This process is called time error correction.

OPERATING RESERVES

Each Balancing Authority must provide operating reserves to restore its tie flows to schedule within 15 minutes following the loss of a generator within the area. Operating reserves consist of spinning and non-spinning reserves. Spinning reserve is generation that is synchronized and available to supply incremental load in a specified time period. Non-spinning reserve is not synchronized but can be made available within a short period of time. Interruptible load disconnection and coordinated adjustments to interchange schedules can be considered as part of operating reserve.

With the restructuring of the industry; the emergence of merchant power plant owners; the development of ISOs, RTOs, and for-profit transmission companies; and the implementation of retail access in some regulatory jurisdictions, assigning all reliability responsibilities to balancing authorities made the job of defining and applying standards more and more complicated. This was further complicated since some balancing areas are acting as transmission service providers.

The ongoing adjustments to generation levels within each balancing area are, of course, done by computer-based control systems that send signals to generators that provide needed adjustments (i.e., regulation), either up or down.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

CLASSIFICATION OF POWER SYSTEM BUSES

Each bus in the system has four variables: voltage magnitude, voltage angle, real power and reactive power. During the operation of the power system, each bus has two known variables and two unknowns. Generally, the bus must be classified as one of the following bus types: 1. SLACK OR SWING BUS This bus is considered as the reference bus. It must be connected to a generator of high rating relative to the other generators. During the operation, the voltage of this bus is always specified and remains constant in magnitude and angle. In addition to the generation assigned to it according to economic operation, this bus is responsible for supplying the losses of the system. 2. GENERATOR OR VOLTAGE CONTROLLED BUS During the operation the voltage magnitude at this the bus is kept constant. Also, the active power supplied is kept constant at the value that satisfies the economic operation of the system. Most probably, this bus is connected to a generator where the voltage i...

AC Transmission Line and Reactive Power Compensation: A Detailed Overview

  Introduction The efficient operation of modern power systems depends significantly on the management of AC transmission lines and reactive power. Reactive power compensation is a vital technique for maintaining voltage stability, improving power transfer capability, and reducing system losses. This article explores the principles of AC transmission lines, the need for reactive power compensation, and its benefits in power systems. Keywords: Reactive Power Compensation Benefits, STATCOM vs SVC Efficiency, Power Transmission Stability Solutions, Voltage Stability in Long-Distance Grids, Dynamic Reactive Power Compensation.      Fundamentals of AC Transmission Lines AC transmission lines are the backbone of modern power systems, connecting generation stations to distribution networks. They have distributed electrical parameters such as resistance ( R R R ), inductance ( L L ), capacitance ( C C ), and conductance ( G G ) along their length. These parameters influence ...

REVERSING DIRECTION OF ROTATION OF UNIVERSAL MOTOR

The direction of rotation of a universal motor can be changed by either: (i) Reversing the field connection with respect to those of armature; or (ii) By using two field windings wound on the core in opposite directions so that the one connected in series with armature gives clockwise rotation, while the other in series with the armature gives counterclockwise rotation. The second method, i.e, the two field method is used in applications such as motor operated rheostats and servo systems. This method has somewhat simpler connections than the first method. For simple applications like portable drills etc. manual switches are frequently used for reversing the direction of rotation of the motor. Figure  1 (a and b) shows how a DPDT (Double Pole Double Throw) switch and a three position switch may be used for reversing the direction of rotation of single field and double field type of motors respectively. Figure 1 Reversing of a universal motor (a) Armature re...