Skip to main content

CURRENT LIMITING REACTOR

CLR is a well-known fault current limiting technique. Compared with many other methods, it is more economical. In addition its effect on the reliability of substation is negligible. However, it occupies a relatively large area in the substation, due to safety considerations. More- over, it may degrade both voltage stability and transient stability of the system.

TYPE OF CLR

Dry type CLR and oil type CLR are the two well-known types of CLR. Dry type is an air-core reactor with copper or aluminum windings. Generally, iron cores are not used in CLRs, due to the possibility of saturation. Since this device is installed in series with the main circuit, possibility of iron core saturation, specially, during short circuit conditions, is high. Therefore, dry type air-core re- actor is the common type of CLR, used in power systems. One of the main problems, associated with this device, is the safety problem due to the magnetic flux distributed through the space around CLR. Therefore, air-core CLRs require proper fencing due to the personnel safety considerations.

Characteristics of oil type reactors are mainly similar to the dry type. However, the oil type is specifically designed for the heavily polluted environments. Moreover, oil type CLR has got the following advantages:
  • Dielectric constant of oil is greater than air. This will result in the smaller size of oil type CLR, compared with the dry type. 
  • Heat transfer capability of oil is higher the air. This will result in some advantages and savings during the design stage. 

TECHNICAL SPECIFICATIONS OF CLR

Important technical parameters of CLRs may be listed as follows:
  • Nominal voltage; 
  • Nominal frequency; 
  • Short circuit capacity of the system; 
  • Basic insulation level; 
  • Continuous operating current; 
  • Rated inductance; 
  • Type (dry or oil); 
  • Class (indoor or outdoor). 

PRACTICAL CONSIDERATIONS OF CLR

CLRs may significantly reduce short circuit level. However, some practical restrictions must be considered, before installing CLRs.

VOLTAGE DROP: CLRs may affect voltage profile of the system. Hence, when CLR is recommended for a system, voltage stability studies of the system should be repeated.

TRANSIENT STABILITY: in addition to voltage stability, CLR may also degrade transient stability of the system.

ENERGY CONSUMPTION: since the main current of power system is continuously passing through the CLR, energy consumption of the device might be significant. This issue must be considered in the CLR design stage.

DISTRIBUTED MAGNETIC FLUX: required safety clearances around the CLR should be double-checked, in order to consider the high magnetic flux, distributed through the space. This will necessitate careful fencing.

TRANSIENT RECOVERY VOLTAGE: when the circuit breakers interrupt short circuit or even normal load current, a transient voltage appears across the opened contacts. This voltage is known as Transient Recovery Voltage. TRV and its rate of rise, known as Rate of Rise of Recovery Voltage are considered as important parameters for the circuit breaker manufacturers. If either TRV or RRRV exceeds the circuit breaker capability, possibility of secondary arc will be increased. This will impose a significant stress on the circuit breaker and other equipment.

CLR affects both TRV and RRRV in the following manner:
  • It reduces the peak of TRV. This is an advantage of CLR. 
  • It increases RRRV. This is a disadvantage of CLR. Unfortunately, RRRV is more critical than TRV. Therefore, prior to the installation of CLR, accurate transient studies are required.

Comments

Popular posts from this blog

CLASSIFICATION OF POWER SYSTEM STABILITY

Power system stability is a single problem, however, it is impractical to deal with it as such. Instability of the power system can take different forms and is influenced by a wide range of factors. Analysis of stability problems, including identifying essential factors that contribute to instability and devising methods of improving stable operation is greatly facilitated by classification of stability into appropriate categories. These are based on the following considerations: Ø The physical nature of the resulting instability related to the main system parameter in which instability can be observed. Ø The size of the disturbance considered indicates the most appropriate method of calculation and prediction of stability. Ø The devices, processes, and the time span that must be taken into consideration in order to determine stability. Figure 7.1 Possible classification of power system stability into various categories and subcategories. 1) ROTOR ANGLE STABILITY:  Ro...

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

ADVANTAGES AND DISADVANTAGES OF CORONA EFFECT IN TRANSMISSION LINES | ELECTRICAL ENGINEERING GUIDE

Advantages and Disadvantages of Corona Effect in Power Systems In high-voltage overhead transmission lines , the corona effect plays a critical role in system performance. Corona occurs when the air around a conductor becomes ionized due to high electric stress. While often seen as a drawback because of power losses and interference , it also provides certain engineering benefits . This article explains the advantages and disadvantages of corona effect in detail, with examples relevant to modern electrical power systems. ✅ Advantages of Corona Effect Increase in Virtual Conductor Diameter Due to corona formation, the surrounding air becomes partially conductive, increasing the virtual diameter of the conductor. This reduces electrostatic stress between conductors and minimizes insulation breakdown risks. Related Reading: Electrostatic Fields in High Voltage Engineering Reduction of Transient Surges Corona acts like a natural cushion for sudden ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

Factors Affecting Corona in Overhead Transmission Lines

Factors Affecting Corona in Overhead Transmission Lines Author: Engr. Aneel Kumar Figure 1: Infographic illustrating the factors influencing corona discharge in transmission lines. Introduction The corona effect in overhead transmission lines is a phenomenon that occurs when the electric field intensity around conductors exceeds a critical value, causing ionization of the surrounding air. This ionization produces bluish light, hissing sound, power loss, and ozone gas. While corona may seem undesirable, it also has a few advantages such as reducing overvoltages by absorbing surges. Corona directly impacts power system efficiency, transmission losses, equipment life, and design cost . Therefore, engineers must understand the factors affecting corona in detail to ensure efficient and reliable design of high-voltage transmission systems. 1. Conductor Size (Diameter) ...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...