Skip to main content

BASIC CONCEPTS OF WIND POWER SYSTEMS

The main components of a wind power system are illustrated in Figure 28.1, which include a turbine rotor and blades, a yaw mechanism, a gearbox, a generator, a power electronic converter system, a transformer to connect the wind power system to a power grid, and a wind turbine generator control system.
FIGURE 28.1 Main components of a wind power system.
The wind turbine converts kinetic power in wind (i.e., aerodynamic power) to mechanical power by means of rotation of turbine rotor and blades. The mechanical power is transmitted from the turbine shaft directly or through a gearbox to the generator shaft, depending on the number of poles of the generator. If the generator has a low number of poles (e.g., four poles), a gearbox is commonly used to connect the low-speed turbine shaft and the high-speed generator shaft. If a generator with a high number of poles is used, the gearbox may not be necessary. The generator converts mechanical power to electrical power, which is fed into a power grid or used to supply local loads through optional power electronic converters and a power transformer with circuit breakers. The power transformer is normally located close to the wind turbine to avoid high currents flowing in long low-voltage cables. The use of power electronic converters enables the wind turbine generator to operate at variable speed to generate the maximum power and to have many other operational benefits, such as reactive power and power factor control, reduced mechanical stresses of the drive-train system, and enhanced grid fault ride through capability. The power transformer may be mounted in the nacelle to minimize electrical losses to the grid or at the base of the tower on the foundation. Grid connection is usually made at the foundation. The yaw mechanism rotates the rotor plane of the wind turbine to be perpendicular to the wind direction in order to extract the maximum power from wind.


Wind power to electrical power conversion of the wind turbine generator is regulated by an electronic control system, which consists of the controllers for the generator and power converters, the turbine blades, and the yaw mechanism. The generator/power converter controller regulates the generator and power converters to generate a certain amount of electrical power with the voltage and frequency required by the power grid and loads. The turbine blade-angle controller optimizes the mechanical power output of the wind turbine and limits the mechanical power at the rated value during strong wind speed conditions. The power limitation may be done by stall, active stall, or pitch control. The yaw controller regulates the yaw mechanism to turn the rotor plane of the wind turbine to face the prevailing wind in order to generate the maximum power. If multiple wind turbine generators are connected to form a wind power plant, the control system of each wind turbine generator is usually coordinated by a wind plant central control system through a Supervisory Control and Data Acquisition (SCADA) System.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...