Skip to main content

PRINCIPLES OF SHUNT COMPENSATION

Figure 25.1 shows the principles and theoretical effects of shunt reactive power compensation in a basic ac system, which comprises a source V1, a transmission line, and a typical inductive load. Figure 25.1 a shows the system without compensation, and its associated phasor diagram. In the phasor diagram, the phase angle of the current has been related to the load side, which means that the active current (IP) is in phase with the load voltage V2.

Since the load is assumed inductive, it requires reactive power for proper operation, which must be supplied by the source, increasing the current flow from the generator and through the lines. If reactive power is supplied near the load, the line current is minimized, reducing power losses and improving voltage regulation at the load terminals. This can be done with a capacitor, with a voltage source, or with a current source. In Fig. 25.1 b, a current-source device is being used to compensate the reactive component of the load current (IQ). As a result, the system voltage regulation is improved and the reactive current component from the source is almost eliminated.

A current source or a voltage source can be used for reactive shunt compensation. The main advantages of using voltage or current source VAR generators (instead of inductors or capacitors) are that the reactive power generated is independent of the voltage at the point of connection and can be adjusted in a wide range.

Since shunt compensation is able to change the power flow in the system by varying the value of the applied shunt equivalent impedance, changing the reactive power flow in the system, during and following dynamic disturbances, the transient stability limit can be increased and effective power oscillation damping can be provided. Thereby, the voltage of the transmission line counteracts the accelerating swings of the disturbed machine and therefore damps the power oscillations.

Independent of the source type or system configuration, different requirements have to be taken into consideration for a successful operation of shunt compensators. Some of these requirements are simplicity, controllability, time response, cost, reliability, and harmonic distortion.

FIGURE 25.1 Principles of shunt compensation in aradial ac system. (a) System phasor diagram withoutreactive compensation. (b) Shunt compensation of thesystem with a current source.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...