Skip to main content

POWER TRANSFORMERS CONNECTED DIRECTLY TO GENERATORS

Power transformers connected directly to generators can experience excitation and short-circuit conditions beyond the requirements defined by ANSI/ IEEE standards. Special design considerations may be necessary to ensure that a power transformer is capable of withstanding the abnormal thermal and mechanical aspects that such conditions can create.

FIGURE 2.21 Typical simplified one-line diagram for the supply of a generating station’s auxiliary power.

Typical generating plants are normally designed such that two independent sources are required to supply the auxiliary load of each generator. Figure 2.21 shows a typical one-line diagram of a generating station. The power transformers involved can be divided into three basic subgroups based on their specific application:

1. Unit transformers (UT) that are connected directly to the system

2. Station service transformers (SST) that connect the system directly to the generator auxiliary load

3. Unit auxiliary transformers (UAT) that connect the generator directly to the generator auxiliary load

In such a station, the UAT will typically be subjected to the most severe operational stresses. Abnormal conditions have been found to result from several occurrences in the operation of the station. Instances of faults occurring at point F in Figure 2.21, between the UAT and the breaker connecting it to the auxiliary load, are fed by two sources, both through the UT from the system and from the generator itself. Once the fault is detected, it initiates a trip to disconnect the UT from the system and to remove the generator excitation. This loss of load on the generator can result in a higher voltage on the generator, resulting in an increased current contribution to the fault from the generator. This will continue to feed the fault for a time period dependent upon the generator’s fault current decrement characteristics. Alternatively, high generator-bus voltages can result from events such as generator-load rejection, resulting in overexcitation of a UAT connected to the generator bus. If a fault were to occur between the UAT and the breaker connecting it to the auxiliary load during this period of overexcitation, it could exceed the thermal and mechanical capabilities of the UAT. Additionally, non synchronous paralleling of the UAT and the SST, both connected to the generator auxiliary load, can create high circulating currents that can exceed the mechanical capability of these transformers.

Considerations can be made in the design of UAT transformers to account for these possible abnormal operating conditions. Such design considerations include lowering the core flux density at rated voltage to allow for operation at higher V/Hz without saturation of the core, as well as increasing the design margin on the mechanical-withstand capability of the windings to account for the possibility of a fault occurring during a period of over excitation. The thermal capacity of the transformer can also be increased to prevent overheating due to increased currents.

Comments

Popular posts from this blog

PRIMARY SECONDARY AND TERTIARY FREQUENCY CONTROL IN POWER SYSTEMS

Primary, Secondary and Tertiary Frequency Control in Power Systems Author: Engr. Aneel Kumar Keywords: frequency control, primary frequency control, automatic generation control (AGC), tertiary control, load-frequency control, grid stability. Frequency control keeps the power grid stable by balancing generation and load. When generation and demand drift apart, system frequency moves away from its nominal value (50 or 60 Hz). Grids rely on three hierarchical control layers — Primary , Secondary (AGC), and Tertiary — to arrest frequency deviation, restore the set-point and optimize generation dispatch. Related: Power System Stability — causes & mitigation Overview of primary, secondary and tertiary frequency control in power systems. ⚡ Primary Frequency Control (Droop Control) Primary control is a fast, local response implemented by generator governors (dro...

Advantages of Per Unit System in Power System Analysis | Electrical Engineering

  Advantages of Per Unit System in Power System Analysis In electrical power engineering, the per unit (p.u.) system is one of the most widely used techniques for analyzing and modeling power systems. It is a method of expressing electrical quantities — such as voltage, current, power, and impedance — as fractions of chosen base values rather than their actual numerical magnitudes. This normalization technique provides a universal language for system calculations, minimizing errors, simplifying transformer modeling, and enabling consistency across multiple voltage levels. Because of these benefits, the per unit system is essential in fault analysis, load flow studies, transformer testing, and short-circuit calculations . ⚡ What is the Per Unit System? The per unit system is defined as: Q u a n t i t y ( p u ) = A c t u a l   V a l u e B a s e   V a l u e Quantity_{(pu)} = \dfrac{Actual \ Value}{Base \ Value} Q u an t i t y ( p u ) ​ = B a se   ...

CASCADED TRANSFORMERS METHOD FOR GENERATING AC HIGH VOLTAGE

High-Frequency AC High Voltage Generation Using Cascaded Transformers Author: Engr. Aneel Kumar Figure 1: Infographic representation of cascaded transformers method for generating high AC voltages. Introduction In high voltage engineering , generating very high alternating current (AC) voltages is essential for testing equipment like insulators, circuit breakers, power cables, and other apparatus. One common and effective method for producing such voltages is the cascaded transformers method . This technique uses a series connection of specially designed test transformers , where the secondary of one transformer feeds the primary of the next. In this way, voltages are built up step by step, achieving levels in the range of hundreds of kilovolts (kV) or even megavolts (MV). Working Principle The principle of cascaded connection relies on the fact that each...

ADVANTAGES OF INTERCONNECTED GRID SYSTEM

Interconnected Grid System: Working, Advantages, Disadvantages, and Comparison with Isolated Grids Author: Engr. Aneel Kumar Figure 1: Infographic showing key advantages of an interconnected grid system. Introduction An interconnected grid system refers to a network of multiple power generation sources, transmission lines, substations, and distribution systems that are linked across regions, states, or even countries. Unlike an isolated grid (or islanded grid) which operates independently, an interconnected grid allows electricity to flow between interconnected nodes, enabling numerous benefits and some trade-offs. In today’s energy landscape—where demand, renewable generation, reliability, and cost pressure are all increasing—understanding how an interconnected grid works, what factors are essential, and what its advantages and disadvantages are is critical for utility planners, reg...

AC Transmission Line and Reactive Power Compensation: A Detailed Overview

  Introduction The efficient operation of modern power systems depends significantly on the management of AC transmission lines and reactive power. Reactive power compensation is a vital technique for maintaining voltage stability, improving power transfer capability, and reducing system losses. This article explores the principles of AC transmission lines, the need for reactive power compensation, and its benefits in power systems. Keywords: Reactive Power Compensation Benefits, STATCOM vs SVC Efficiency, Power Transmission Stability Solutions, Voltage Stability in Long-Distance Grids, Dynamic Reactive Power Compensation.      Fundamentals of AC Transmission Lines AC transmission lines are the backbone of modern power systems, connecting generation stations to distribution networks. They have distributed electrical parameters such as resistance ( R R R ), inductance ( L L ), capacitance ( C C ), and conductance ( G G ) along their length. These parameters influence ...

DIFFERENCE BETWEEN GRID STATION AND SUB STATION

An electrical power substation is a conversion point between transmission level voltages (such as 138 KV) and distribution level voltages (such as 11 KV). A substation has one or more step-down transformers and serves a regional area such as part of a city or neighborhood. Substations are connected to each other by the transmission ring circuit. An electrical grid station is an interconnection point between two transmission ring circuits, often between two geographic regions. They might have a transformer, depending on the possibly different voltages, so that the voltage levels can be adjusted as needed. The interconnected network of grid stations is called the grid, and may ultimately represent an entire multi-state region. In this configuration, loss of a small section, such as loss of a power station, does not impact the grid as a whole, nor does it impact the more localized neighborhoods, as the grid simply shifts its power flow to compensate, giving the power station o...

CLASSIFICATION OF POWER SYSTEM BUSES

Each bus in the system has four variables: voltage magnitude, voltage angle, real power and reactive power. During the operation of the power system, each bus has two known variables and two unknowns. Generally, the bus must be classified as one of the following bus types: 1. SLACK OR SWING BUS This bus is considered as the reference bus. It must be connected to a generator of high rating relative to the other generators. During the operation, the voltage of this bus is always specified and remains constant in magnitude and angle. In addition to the generation assigned to it according to economic operation, this bus is responsible for supplying the losses of the system. 2. GENERATOR OR VOLTAGE CONTROLLED BUS During the operation the voltage magnitude at this the bus is kept constant. Also, the active power supplied is kept constant at the value that satisfies the economic operation of the system. Most probably, this bus is connected to a generator where the voltage i...