Skip to main content

SPECIAL FEATURES OF THE CURRENT LIMITING CIRCUIT BREAKER

In order to reduce the mechanical (due to electro-dynamic forces) and thermal stresses on the object to be protected, the current must be interrupted right during the initiation of the short-circuit, before the full prospective value can be attained (as for example to avoid the welding of the contactor contacts).

This is achieved by:

• Quick opening of the main contacts.

• Rapid build-up of a high arc-voltage (move the arc quickly away from the contact tips and guide it to the arc chamber).

The effects of the reduced let-through values are:

• Reduction of the electro-dynamic forces on the bus-bars (as for example increased spacing between supports).

• Reduction of thermal stresses. The welding of the contacts of contactors can be prevented. Over-dimensioning of the contactors can be avoided or at least kept within reasons. The result is reflected in the short-circuit co-ordination tables - compact starter combinations with components selected mostly on the basis of their rated currents.

The current limiting circuit breakers are used in a wide field of applications. It is no longer necessary to carry out complex calculations of the short-circuit current at each point of the network where a circuit breaker is installed. The subject of short circuit co-ordination takes about as much planning effort as in the case of fuses.

The circuit breaker should be constructed in such a way that it can interrupt the short-circuit current under all possible situations without any problem whatsoever.

The features, which make the planning with circuit breakers as simple as that with fuses, are :

• High breaking capacity makes calculation of short-circuit current superfluous: in actual applications, the fault level (prospective short-circuit current) at the point where circuit breakers for motor branch circuits are installed lie mostly in the range of 1….…20kA. If the breaking capacity of the circuit breaker is higher than this, no further calculation is necessary. The circuit breakers can be utilised in any point of the installation without calculations for its dimensioning, similar to a high rupturing capacity fuse.

• Low let-through values: the contactors connected downstream are less stressed as the short circuit current is appreciably limited by the circuit breakers. Short-circuit co-ordination is simplified and it is not necessary to consult the short-circuit co-ordination tables (the manufacturers perform tests for the short-circuit co-ordination and supply tables in accordance with the IEC 947-4-1 for, as for example, types "1" or "2"). The combination of a circuit breaker and a contactor, both selected on the basis of their rated currents, can in most of the cases fulfil the requirements of the type of co-ordination "2", without any other considerations.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...