Skip to main content

MAGNETIC FIELD AND MAGNETIC FLUX

When a current-carrying conductor is placed in a magnetic Field, it experiences a force. Experiment shows that the magnitude of the force depends directly on the current in the wire, and the strength of the magnetic Field, and that the force is greatest when the magnetic Field is perpendicular to the conductor.

In the set-up shown in Figure 1.1, the source of the magnetic field is a bar magnet, which produces a magnetic Field as shown in Figure 1.2.

Figure 1.1 Mechanical force produced on a current-carrying wire in a magnetic Weld


The notion of a ‘magnetic Field’ surrounding a magnet is an abstract idea that helps us to come to grips with the mysterious phenomenon of magnetism: it not only provides us with a convenient pictorial way of picturing the directional eVects, but it also allows us to quantify the ‘strength’ of the magnetism and hence permits us to predict the various eVects produced by it.

The dotted lines in Figure 1.2 are referred to as magnetic Flux lines, or simply Flux lines. They indicate the direction along which iron Wlings (or small steel pins) would align themselves when placed in the Field of the bar magnet. Steel pins have no initial magnetic Field of their own, so there is no reason why one end or the other of the pins should point to a particular pole of the bar magnet.

However, when we put a compass needle (which is itself a permanent magnet) in the Field we Wnd that it aligns itself as shown in Figure 1.2. In the upper half of the Wgure, the S end of the diamond-shaped compass settles closest to the N pole of the magnet, while in the lower half of the Wgure, the N end of the compass seeks the S of the magnet. This immediately suggests that there is a direction associated with the lines of Flux, as shown by the arrows on the Flux lines, which conventionally are taken as positively directed from the N to the S pole of the bar magnet.

The sketch in Figure 1.2 might suggest that there is a ‘source’ near the top of the bar magnet, from which Flux lines emanate before making their way to a corresponding ‘sink’ at the bottom. However, if we were to look at the Flux lines inside the magnet, we would Wnd that they were continuous, with no ‘start’ or ‘Wnish’. (In Figure 1.2 the internal Flux lines have been omitted for the sake of clarity, but a very similar Field pattern is produced by a circular coil of wire carrying a d.c. See Figure 1.6 where the continuity of the Flux lines is clear.). Magnetic Flux lines always form closed paths, as we will see when we look at the ‘magnetic circuit’, and draw a parallel with the electric circuit, in which the current is also a continuous quantity. (There must be a ‘cause’ of the magnetic flux, of course, and in a permanent magnet this is usually pictured in terms of atomic-level circulating currents within the magnet material. Fortunately, discussion at this physical level is not necessary for our purpose.)


Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...