Skip to main content

IMPROVEMENT OF QUALITY OF POWER BY PROPER POWER QUALITY MANAGEMENT

Power Quality Management plays an important role in improving power quality. The fundamental goal of energy management is to produce goods and provide services with the least cost and least environmental effect. The term energy management means many things to many people The objective of Energy Management is to achieve and maintain optimum energy procurement and utilization, throughout the organization and To minimize energy costs / waste without affecting production & quality, To minimize environmental effects. The strategy of adjusting and optimizing energy, using systems and procedures so as to reduce energy requirements per unit of output while holding constant or reducing total costs of producing the output from these systems.

Management always keeps an eye to the monitoring equipment to monitor currents, voltages, harmonics and power as performance values for supporting network plans and operational which support power systems availability, efficiency, reliability. The process of power Quality disturbance analysis is mainly depends upon four steps, detentions, classification, characterization and location.

Recent improvement in thermal image processing has developed Infrared thermo graphic inspection which can help to protect the equipment in business, home facility through infrared imaging, detecting problems that can become expensive and time consuming if not corrected. The inspection can be performed on all the types of electrical equipment and will determine if abnormal conditions exist when equipment is operating, a situation which can lead to electrical or mechanical failure.

Power system, SCADA concepts, real time monitoring, wide are measurements system. The current necessity for more and more energy in all the industrial sectors brings a variety of challenges for Engineers involved in power system control. The requirements of proper power system management cannot be achieved without supervisory control system. SCADA system has replaced the old and inefficient power quality measuring equipments. SCADA in power system has improved the power quality management very much.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...