Skip to main content

SHORT CIRCUIT CHARACTERISTICS

Short-circuits can be defined according to three main characteristics:

– Their origin:

They may be mechanical: breakdown of conductors or accidental electrical connection between two conductors via a foreign body such as a tool or animal.

They may be electrical: following the degradation of the insulation between phases, or between phase and frame or earth, or resulting from internal over voltages (switching surges) or atmospheric overvoltage (stroke of lightning).

They may be due to an operating error: earthling of a phase, connection between two different voltage supplies or different phases or closing of a switching device by mistake.

– Their location:

The short-circuit may be generated inside equipment (cable, motor, transformer, switchboard, etc.) and it generally leads to deterioration.

The short circuit may be generated outside equipment (cable, motor, transformer, switchboard, etc.). The consequences are limited to disturbances which may, in the course of time, lead to deterioration of the equipment in question and thereby cause an internal fault.

– Their duration:

Self Extinguishing: the fault disappears on its own.

Fugitive: the fault disappears due to the action of protective devices and does not reappear when the equipment is started up again (the fault is “burnt out” after re energization);

Permanent: these faults require de-energization of a cable, machine, etc., and intervention by the operating personnel.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...