Skip to main content

HOMOPOLAR MACHINES

Homopolar generators

Even though the magnetic poles occur in pairs, in a homopolar generator the conductors are arranged in such a manner that they always move under one polarity. Either North Pole or South Pole could be used for this purpose. Since the conductor encounters the magnetic flux of the same polarity everywhere it is called a homopolar generator. A cylindrically symmetric geometry is chosen. The conductor can be situated on the surface of the rotor with one slip-ring at each end of the conductor. A simple structure where there is only one cylindrical conductor with ring brushes situated at the ends is shown in Fig. 4. The excitation coil produces a field which enters the inner member from outside all along the periphery. The conductor thus sees only one pole polarity or the flux directed in one sense.

A steady voltage now appears across the brushes at any given speed of rotation. The polarity of the induced voltage can be reversed by reversing either the excitation or the direction of rotation but not both.


The voltage induced would be very low but the currents of very large amplitudes can be supplied by such machines. Such sources are used in some applications like pulse-current and MHD generators, liquid metal pumps or plasma rockets. The steady field can also be produced using a permanent magnet of ring shape which is radially magnetized. If higher voltages are required one is forced to connect many conductors in series.

This series connection has to be done externally. Many conductors must be situated on the rotating structure each connected to a pair of slip rings. However, this modification introduces parasitic air-gaps and makes the mechanical structure very complex. The magnitude of the induced emf in a conductor 10 cm long kept on a rotor of 10 cm radius rotating at 3000 rpm, with the field flux density being 1 Tesla everywhere in the air gap, is given by


The voltage drops at the brushes become very significant at this level bringing down the efficiency of power conversion. Even though homopolar machines are d.c. generators in a strict sense that they ’generate’ steady voltages, they are not quite useful for day to day use.

A more practical converters can be found in the d.c. machine family called ”hetero-polar” machines.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...