Nuclear power plants are thought to be the solution for bulk power generation. The present day atomic power plants work on the principle of nuclear fission of 235U. In the natural uranium, 235U constitutes only 0.72% and remaining parts is constituted by 99.27% of 238U and only about 0.05% of 234U. The concentration of 235U may be increased to 90% by gas diffusion process to obtain enriched 235U. When 235U is bombarded by neutrons a lot of heat energy along with additional neutrons are produced. These new neutrons further bombard 235U producing more heat and more neutrons. Thus a chain reaction sets up. However this reaction is allowed to take place in a controlled manner inside a closed chamber called nuclear reactor. To ensure sustainable chain reaction, moderator and control rods are used. Moderators such as heavy water (deuterium) or very pure carbon 12C are used to reduce the speed of neutrons. To control the number neutrons, control rods made of cadmium or boron steel are inserted inside the reactor. The control rods can absorb neutrons. If we want to decrease the number neutrons, the control rods are lowered down further and vice versa. The heat generated inside the reactor is taken out of the chamber with the help of a coolant such as liquid sodium or some gaseous fluids. The coolant gives up the heat to water in heat exchanger to convert it to steam as shown in figure. The steam then drives the turbo set and the exhaust steam from the turbine is cooled and fed back to the heat exchanger with the help of water feed pump. Calculation shows that to produce 1000 MW of electrical power in coal based thermal plant, about 6 × 106 Kg of coal is to be burnt daily while for the same amount of power, only about 2.5 Kg of 235U is to be used per day in a nuclear power stations.
