Skip to main content

MUTUAL INDUCTANCE

Suppose we hook up an AC generator to a solenoid so that the wire in the solenoid carries AC. Call this solenoid the primary coil. Next place a second solenoid connected to an AC voltmeter near the primary coil so that it is coaxial with the primary coil. Call this second solenoid the secondary coil. As shown in figure.

The alternating current in the primary coil produces an alternating magnetic field whose lines of flux link the secondary coil (like thread passing through the eye of a needle). Hence the secondary coil encloses a changing magnetic field. By Faraday’s law of induction this changing magnetic flux induces an emf in the secondary coil. This effect in which changing current in one circuit induces an emf in another circuit is called mutual induction.

Let the primary coil have N1 turns and the secondary coil have N2 turns. Assume that the same amount of magnetic flux F2from the primary coil links each turn of the secondary coil. The net flux linking the secondary coil is then N2F2. This net flux is proportional to the magnetic field, which, in turn, is proportional to the current I1 in the primary coil. Thus we can write N2F2ยตI1. This proportionality can be turned into an equation by introducing a constant. Call this constant M, the mutual inductance of the two coils:

The unit of inductance is WB/A=Henry (H) named after Joseph Henry.

The emf induced in the secondary coil may now be calculated using Faraday’s law:


The above formula is the emf due to mutual induction.

Example

The apparatus used in Experiment EM-11B consists of two coaxial solenoids. A solenoid is essentially just a coil of wire. For a long, tightly-wound solenoid of n turns per unit length carrying current I the magnetic field over its cross-section is nearly constant and given by. Assume that the two solenoids have the same cross-sectional area A. Find a formula for the mutual inductance of the solenoids.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...