Skip to main content

DIFFERENCE BETWEEN CSMA/CD AND CSMA/CA:

CSMA/CD:
Carrier sense multiple access with collision detection (CSMA/CD) is one of the most popular access methods, with CSMA/CD, every host has equal access to the wire and can place data on the wire when the wire is free from traffic. If a host wishes to place data on the wire, it will “sense” the wire and determine whether there is a signal already on the wire. If there is, the host will wait to transmit the data; if the wire is free, the host will send the data, as shown in Figure 1.
Figure 1: A host "sensing" the wire to see if it is free of traffic.



The problem with the process just described is that, if there are two systems on the wire that “sense” the wire at the same time to see if the wire is free, they will both send data out at the same time if the wire is free. When the two pieces of data are sent out on the wire at the same time, they will collide with one another, and the data will be destroyed. If the data is destroyed in transit, the data will need to be retransmitted. Consequently, after a collision, each host will wait a variable length of time before retransmitting the data (they don’t want the data to collide again), thereby preventing a collision the second time. When a system determines that the data has collided and then retransmits the data, that is known as collision detection.

 To summarize, CSMA/CD provides that before a host sends data on the network, it will “sense” (CS) the wire to ensure that the wire is free of traffic. Multiple systems have equal access to the wire (MA), and if there is a collision, a host will detect that collision (CD) and retransmit the data.

CSMA/CA:
Carrier sense multiple access with collision avoidance (CSMA/CA) is not as popular as CSMA/CD and for good reason. With CSMA/CA, before a host sends data on the wire, it will “sense” the wire as well to see if the wire is free of signals. If the wire is free, it will try to “avoid” a collision by sending a piece of “dummy” data on the wire first to see whether it collides with any other data. If it does not collide, the host in effect assumes “If my dummy data did not collide, then the real data will not collide,” and it submits the real data on the wire.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...