Skip to main content

STEPS TO BETTER MOTOR APPLICATIONS

1) KNOW THE LOAD CHARACTERISTICS
For line-operated motors, loads fall into three general categories: constant torque, torque that changes abruptly, and torque that change gradually over time.

Bulk material conveyors, extruders, positive displacement pumps, and compressors without air unloaders run at relatively steady levels of torque. Sizing a motor for these applications is simple once the torque (or horsepower) for the application is known. Load demands by elevators, compactors, punch presses, saws, and batch conveyors change abruptly from low to high in a short time, often in a fraction of a second. The most critical consideration for selecting a motor in these cases is to choose one whose speed-torque curve exceeds the load torque curve.

Loads from centrifugal pumps, fans, blowers, compressors with unloaders, and similar equipment tend to be variable over time. In choosing a motor for these conditions, consider the highest continuous load point, which typically occurs at the highest speed.

2) GET A HANDLE ON HORSEPOWER
The rule of thumb for motor horsepower is: Select only what you need, and avoid the temptation to oversize or undersize. Calculate the required horsepower from this formula:
Horsepower = Torque x Speed / 5250
Where torque is in lb-ft and speed is in rpm.
3) GETTING STARTED
Another consideration is inertia, particularly during startup. Every load represents some value of inertia, but punch presses, ball mills, crushers, gearboxes that drive large rolls, and certain types of pumps require high starting torques due to the huge mass of the rotating elements. Motors for these applications need to have special ratings so that the temperature rise at startup does not exceed the allowable temperature limit. A properly sized motor must be able to turn the load from a dead stop (locked-rotor torque), pull it upto operating speed (pull-up torque), and then maintain the operating speed. Motors are rated as one of four “design types” for their ability to endure the heat of that starting and pull up. In ascending order of their ability to start inertial loads, NEMA designates these as design type A, B, C, and D. Type B is the industry standard and is a good choice for most commercial and industrial applications.

4) ADJUST FOR DUTY CYCLE
Duty cycle is the load that a motor must handle over the period when it starts, runs, and stops.

Continuous duty: is—by far—the simplest and most efficient application. The duty cycle begins with startup, then long periods of steady operation where the heat in the motor can stabilize as it runs. A motor in continuous duty can be operated safely at or near its rated capacity because the temperature has a chance to stabilize.

Intermittent duty: is more complicated. The life of commercial airplanes is measured by their number of landings; in the same way, the life of a motor is proportional to the number of starts it makes. Frequent starts shorten life because inrush current at startup heats the conductor rapidly. Because of this heat, motors have a limited number of starts and stops that they can make in an hour.

5) THE LAST CONSIDERATION, MOTOR HYPOXIA
If your motor is going to operate at altitudes that are substantially above sea level, then it will be unable to operate at its full service factor because, at altitude, air is less dense and does not cool as well. Thus, for the motor to stay within safe limits of temperature rise, it must be derated on a sliding scale. Up to an altitude of 3,300 ft, SF = 1.15; at 9000 ft, it declines to 1.00. This is an important consideration for mining elevators, conveyors, blowers, and other equipment that operates at high altitudes.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...