Skip to main content

5 PIN RELAY

This is sometimes known as an ‘either/or’ relay because you can use either one circuit or the other. This type of relay is particularly useful for headlights. Pin number 87A feeds the dipped beam circuit. When the driver selects main beam the relay is energised so the moving contact moves to pin 87 and feeds the main beam circuit. So with the five pin relay you can have either dipped beam or main beam.


The basic relay works in three stages.

Stage 1:

When the switch (A) is closed, current flows through the winding around the soft iron core and down to earth at (B).This action magnetises the iron core.

Stage 2:

The magnetised iron core attracts the metal moving contact (C) which touches the fixed contact (D). Current can now flow from supply 2through the contacts and on to the load (E) e.g. a heated rear window.

Stage 3:

When the switch (A) is opened the current stops flowing around the iron core, so the magnetic field collapses. The moving contact is then pulled away from the fixed contact by the return spring (F). Current cannot now flow.

Switch on current to iron core.
Magnet closes relay contacts and current flows.
Switch off relay contacts opened by return spring.

If you look at the relay mounting plate in most vehicles (usually near the R-fuse carrier) you should see a few relays. The top of the range models usually have at least six. You need to know which relay pins are connected to the fixed and moving contacts in a relay. Each pin has a number or letter which tells you which contact the relay pins are connected to.

For a four pin relay the numbers and letters are. 
  • 86 or W2 Pin connected to supply side of the winding. 
  • 85 or W1 Pin connected to the earth side of the winding. 
  • 30 or C2 Pin connected to the moving contact. 
  • 87 or C1 Pin connected to the fixed contact. 
With the basic four pin relay shown on page 90 the contacts are held open by a spring. A variation of this is when the contacts are normally closed. When a relay is not magnetised the contacts are said to be ‘at rest’. The contacts can be at rest in either an open or closed position. 
  • Relays that have their contacts open when they are not magnetised are called normally open (N/O) relays. 
  • Relays that have their contacts closed when they are not magnetised are called normally closed (N/C) relays. 
For example a four pin relay that is normally closed can, be identified by the number 87A. 
  • 87 fixed contact on a normally open relay. 
  • 87A fixed contact on a normally closed relay.

Comments

Popular posts from this blog

ADVANTAGES AND DISADVANTAGES OF CORONA

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages. ADVANTAGES (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors. (ii) Corona reduces the effects of transients produced by surges. DIS-ADVANTAGES (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line. (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action. (iii) The current drawn by the line due to corona is non-sinusoidal and hence non-sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighboring communication lines.

ADVANTAGES OF PER UNIT SYSTEM

PER UNIT SYSTEM The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation: Quantity per unit (pu) = Actual value/ Base value of quantity ADVANTAGES OF PER UNIT SYSTEM While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system. Voltages, currents and impedances expressed in per unit do not change when they are referred from one side of transformer to the other side. This is a great advantage. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values. Transformer connections do not affect the per unit values. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings. Transformers can be replaced by their equivalent series impedances. ...

ABSOLUTE AND SECONDARY INSTRUMENTS

The various electrical instruments may, in a very broad sense, be divided into (i) Absolute Instruments (ii) Secondary Instruments. Absolute Instruments are those which give the value of the quantity to be measured, in terms of the constants of the instrument and their deflection only. No previous calibration or comparison is necessary in their case. The example of such an instrument is tangent galvanometer, which gives the value of current, in terms of the tangent of deflection produced by the current, the radius and number of turns of wire used and the horizontal component of earth’s field.  Secondary Instruments  are those, in which the value of electrical quantity to be measured can be determined from the deflection of the instruments, only when they have been pre-calibrated by comparison with an absolute instrument. Without calibration, the deflection of such instruments is meaningless. It is the secondary instruments, which are most generally used in ev...